LOW-NOISE DUAL OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2068 is a high performance, low noise dual operational amplifier. This amplifier features popular pin-out, superior noise performance, and superior total harmonic distortion. This amplifier also features guaranteed noise performance with substantially higher gain-bandwidth product and slew rate which far exceeds that of the 4558 type amplifier. The specially designed low noise input transistors allow the NJM2068 to be used in very low noise signal processing applications such as audio preamplifiers and servo error amplifier.

 $(\pm 4V \sim \pm 18V)$

(FLAT+JISA, $0.56 \mu V$ typ.)

DIP8, DMP8, SIP8, SSOP8

(0.001% typ.)

 $(6V/\mu s typ.)$

(27MHz @f=10kHz)

■ FEATURES

Operating Voltage

Low Total Harmonic Distortion

Low Noise Voltage

- Little Color College

High Slew Rate

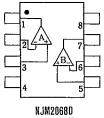
• Unity Gain Bandwidth

Package Outline

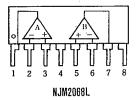
Bipolar Technology

■ PACKAGE OUTLINE

NJM2068M



NJM2068V



4

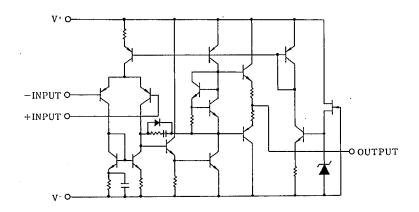
■ PIN CONFIGURATION

NJM2068M NJM2068V

PIN FUNCITON

1. A OUTPUT

2. A-INPUT 3. A+INPUT


1 V-

5. B+INPUT

6. B-INPUT 7. B OUTPUT

7. D 8. V+

■ EQUIVALENT CIRCUIT (1/2 Shown)

ABSOLUTE MAXIMUM RATINGS

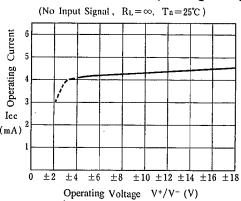
(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*/V-	±18	٧
Input Voltage	Vic	±15 (note)	V
Differential Input Voltage	V _{ID}	±30	V
Power Dissipation	P _D	(DIP8) 500	mW
		(DMP8) 300	mW
		mW	
		(SIP8) 800	
Operating Temperature Range	Topr	−20∼+75	C
Storage Temperature Range	Tstg	-40~+125	ొ

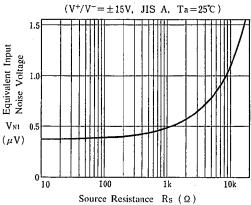
(note) For supply voltage less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

■ ELECTRICAL CHARACTERISTICS

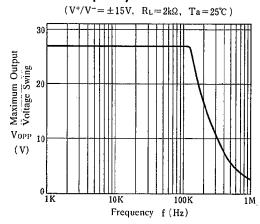
 $(Ta = 25^{\circ}C, V^{+}/V^{-} = \pm 15V)$

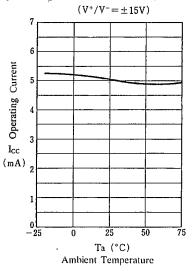

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	R _S ≦I0kΩ	_	0.3	3	mV
Input Offset Current	I _{to}		_	5	200	пA
Input Bias Current	IB		_	150	1000	пA
Input Resistance	R _{IN}		50	300	_	kΩ
Large Signal Voltage Gain	Av	$R_L \ge 2k\Omega$, $V_O = \pm 10V$	90	120	_	dB
Maximum Output Voltage Swing	V _{OM}	R _L ≥2kΩ	±12	±13.5		v
Input Common Mode Voltage Range	V _{ICM}		±12	±13.5	_	v
Common Mode Rejection Ratio	CMR	R _S ≦10kΩ	80	110		dB
Supply Voltage Rejection Ratio	SVR	R _S ≦10kΩ	80	120		dB
Slew Rate	SR	R _L ≦2kΩ		6	l —	V/μs
Gain Bandwidth Product 1	GB1	f=10kHz		27		MHz
Gain Bandwidth Product 2	GB2	[=100kHz	_	19		MHz
Unity Gain Bandwidth	fr	A _V =I	l —	5.5	_	MHz
Total Harmonic Distortion	THD	$A_v = 20 \text{dB}, V_o = 5 \text{V}, R_L = 2 \text{k}\Omega, f = 1 \text{kHz}$		0.001	<u> </u>	%
Equivalent Input Noise Voltage 1	V _{NI} 1	FLAT+JISA, $R_s=300\Omega$		0.44	0.56	μV
Operating Current	I _{CC}		-	5.0	8.0	mA
				1	1	l

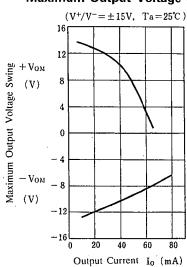
(note I)Oscillation might be caused when capacitor type load were connected. It is recommendable to insert series resistor (about 50Ω) at the output for preventing oscillation.

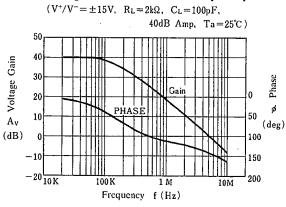

(note 2)In regard to Noise Standard, NJRC is preparing for special D rank type products ($R_s = 2.2k\Omega$, RIAA, $V_{NI} = 1.4_{MV}$ Max.)

TYPICAL CHARACTERISTICS

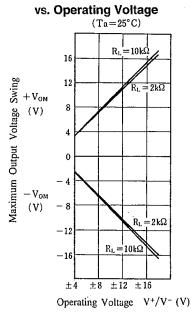

Operating Current vs. Operating Voltage


Equivalent Input Noise Voltage vs. Source Resistance

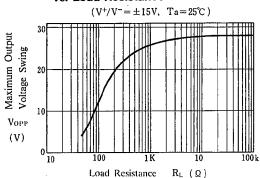

Maximum Output Voltage Swing vs. Frequency


Operating Current vs. Temperature

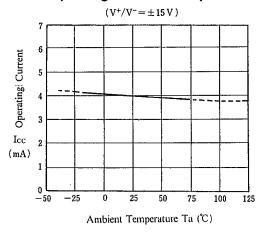
Maximum Output Voltage Swing

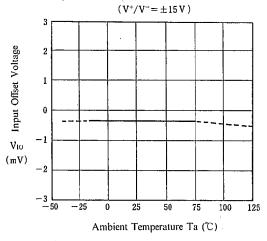


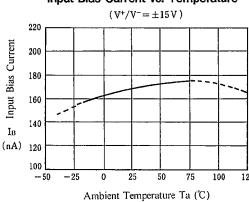
Voltage Gain, Phase vs. Frequency

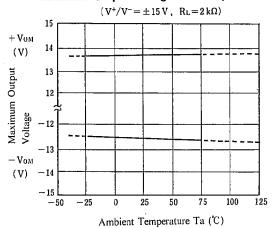


4-88


■ TYPICAL CHARACTERISTICS Maximum Output Voltage Swing vs. Operating Voltage


Maximum Output Voltage Swing vs. Load Resistance


Operating Current vs. Temperature


Input Offset Voltage vs. Temperature

Input Bias Current vs. Temperature

Maximum Output Voltage vs. Temperature

New Japan Radio Co.,Ltd.

N		N/	2	U	6	Q
IN	U	IV		U	U	0

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.