DATA SHEET

Part No.	AN79L08M		
Package Code No.	HSIP003-P-0000Q		

Contents

■ Overview	3
■ Features	3
■ Applications	3
■ Package	3
■ Type	3
■ Block Diagram	4
■ Application Circuit Example	5
■ Pin Descriptions	6
■ Absolute Maximum Ratings	7
■ Electrical Characteristics	8
■ Electrical Characteristics (Reference values for design)	ć
■ Technical Data	10
■ Usage Notes	11

AN79L08M

3-pin negative output voltage regulator (100 mA type)

Overview

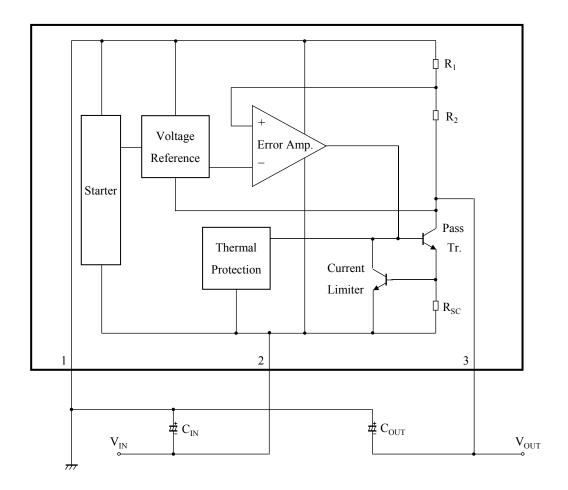
The AN79LxxM series are 3-pin, fixed negative output type monolithic voltage regulators. Stabilized fixed output voltage is obtained from unstable DC input voltage without using any external components. 12 types of output voltage are available; –4 V, –5 V, –6 V, –7 V, –8 V, –9 V, –10 V, –12 V, –15 V, –18 V, –20 V and –24 V. They can be used widely in power circuits with current capacity of up to 100 mA. The AN79L08M is the –8 V output voltage type in these series.

■ Features

- No external components
- Output voltage: -8 V
- Built-in overcurrent limit circuit
- Built-in thermal overload protection circuit

Applications

• 3-pin negative output voltage regulator (100 mA type)

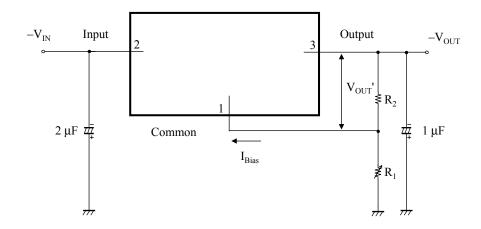

■ Package

• 3-pin plastic single inline package with heat sink (SIP type)

■ Type

• Silicon monolithic bipolar IC

■ Block Diagram


 $C_{\rm IN}~$: When a wiring from a smoothing circuit to a three-pin regulator is long, it is likely to oscillate at output. A capacitor of 0.1 μF to 0.47 μF should be connected near an input pin.

 C_{OUT} : Deadly needed to prevent from oscillation (0.33 μF to 1.0 μF). It is recommended to use a capacitor of a small internal impedance (ex. tantalum capacitor) when using it under a low temperature. When any sudden change of load current is likely to occur, connect an electrolytic capacitor of 10 μF to 100 μF to improve a transitional response of output voltage.

 $\begin{array}{ll} R_1 & : \ 3 \ k\Omega \\ R_2 & : \ 5 \ k\Omega \end{array}$

■ Application Circuit Example

Adjustable output regulator

$$\mid \mathbf{V}_{\mathrm{OUT}} \mid = \mathbf{V}_{\mathrm{OUT}} \cdot \left(1 + \frac{\mathbf{R}_1}{\mathbf{R}_2} \right) + \mathbf{I}_{\mathrm{Q}} \, \mathbf{R}_1$$

 $\label{eq:Note_out} Note) - V_{OUT} \ varies \ due \ to \ sample \ to \ sample \ variation \ of \ I_{Bias}.$ Never fail to adjust individually with $R_1.$

■ Pin Descriptions

Pin No.	Pin name	Туре	Description
1	Common	Ground	Ground
2	Input	Input	Input supplies power to the internal circuitry
3	Output	Output	Regulated power output

■ Absolute Maximum Ratings

A No.	Parameter	Symbol	Rating	Unit	Note
1	Input voltage	V _{IN}	-35	V	*1
2	Supply current	I_{CC}	200	mA	*2
3	Power dissipation	P_{D}	270	mW	*3
4	Operating ambient temperature	T _{opr}	-20 to + 80	°C	*4
5	Storage temperature	T_{stg}	-55 to +150	°C	*4

Note) *1: The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

■ Operating supply voltage range

Parameter	Symbol	Range	Unit	Note
Supply voltage range	V _{CC}	−11 to −23	V	

Note) The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

^{*2:} Since current limiting circuit is built in, current value never exceeds the limit.

^{*3:} The power dissipation shown is the value at T_a = 80°C.

When using this IC, refer to the ● P_D − T_a diagram in the ■ Technical Data and use under the condition not exceeding the allowable value.

When T_i exceeds 150°C, the internal circuit cuts off the output.

^{*4:} Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for Ta = 25°C.

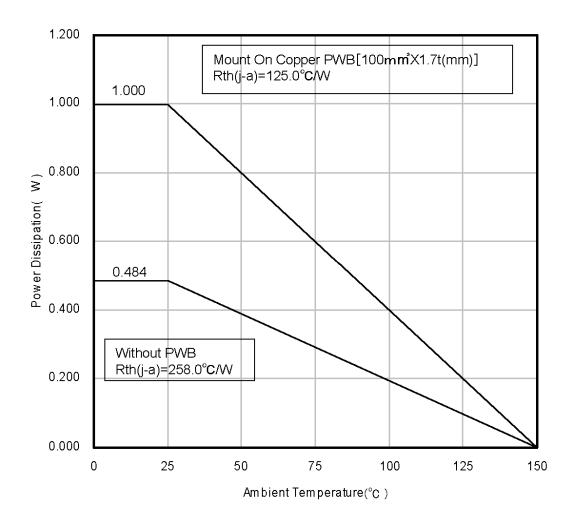
■ Electrical Characteristics

Note) Unless otherwise specified, T_a = 25°C±2°C, V_{IN} = -14 V, I_{OUT} = 40 mA, C_{IN} = 2 μF and C_{OUT} = 1 μF , T_j = 0°C to 125°C

В	Parameter	Symbol	Conditions	Limits			Linit	Note
No.				Min	Тур	Max	Unit	Note
			$T_j = 25^{\circ}C$	-7.68	-8.0	-8.32	V	*1
1 Output voltage	Output voltage	V_{OUT}	$V_{IN} = -11 \text{ V to } -23 \text{ V},$ $I_{OUT} = 1 \text{ mA to } 70 \text{ mA}$	-7.60	_	-8.40	V	*1
,	2 Line regulation	REG _{IN}	$T_j = 25^{\circ}C$ $V_{IN} = -10 \text{ V to } -24 \text{ V}$	_	_	160	mV	*1
2			$T_j = 25^{\circ}C$ $V_{IN} = -11 \text{ V to } -21 \text{ V}$		_	80	mV	*1
3	Load regulation	REG_L	$T_j = 25$ °C $I_{OUT} = 1$ mA to 100 mA	_	15	80	mV	*1
3			$T_{j} = 25^{\circ}C$ $I_{OUT} = 1 \text{ mA to } 40 \text{ mA}$	_	7.0	40	mV	*1
4	Bias current	I_{Bias}	$T_j = 25^{\circ}C$	_	3.0	5.0	mA	*1
5	Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$T_j = 25^{\circ}C$ $V_{IN} = -11 \text{ V to } -23 \text{ V}$		_	0.5	mA	*1
6	Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$T_j = 25$ °C $I_{OUT} = 1$ mA to 40 mA	_		0.1	mA	*1
7	Ripple rejection ratio	RR	$f = 120 \text{ Hz}, I_{OUT} = 40 \text{ mA}$ $V_{IN} = -11 \text{ V to } -21 \text{ V}$	54	_	_	dB	

Note) *1: The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

■ Electrical Characteristics (Reference values for design)


Note) Unless otherwise specified, $T_a = 25^{\circ}\text{C}\pm2^{\circ}\text{C}$, $V_{\text{IN}} = -14 \text{ V}$, $I_{\text{OUT}} = 40 \text{ mA}$, $C_{\text{IN}} = 2 \mu\text{F}$ and $C_{\text{OUT}} = 1 \mu\text{F}$, $T_j = 0^{\circ}\text{C}$ to 125°C . The characteristics listed below are reference values for design of the IC and are not guaranteed by inspection. If a problem does occur related to these characteristics, Matsushita will respond in good faith to user concerns.

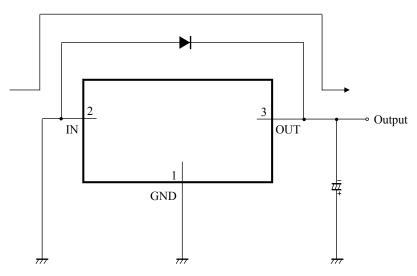
B No.	Parameter	Symbol	Conditions	Reference values			Unit	Note
				Min	Тур	Max	OTIL	Note
1	Output noise voltage	Vno	f = 10 Hz to 100 kHz	_	52	_	μV	
2	Minimum input/output voltage difference	$V_{\text{DIF}(\text{min})}$	$T_j = 25$ °C	_	0.8	_	V	*1
3	Output short-circuit current	I _{O(Short)}	$T_j = 25^{\circ}C$	_	200	_	mA	*1
4	Output voltage temperature coefficient	$\frac{\Delta V_{OUT}}{T_a}$	$I_{OUT} = 5 \text{ mA}$	_	-0.6	_	mV/°C	_

Note) *1: The specified condition $T_j = 25^{\circ}$ C means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

■ Technical Data

• P_D — T_a diagram

Panasonic


AN79L08M

■ Usage Notes

1. Short-circuit between the input pin and the GND pin

If the input pin is short-circuitted to GND pin or is cut off when a large capacitance capacitor has been connected to the IC's load, a voltage of a capacitor connected to an output pin is applied between input/output of the IC and this likely results in damage of the IC.

It is necessary, therefore, to connect a diode, as shown in the figure below, to counter the reverse bias between input/output pins.

2. Floating of GND pin

If the GND pin is made floating in an operating mode, an unstabilized input voltage is outputted. In this case, the thermal protection circuit inside the IC does not normally operate. In this state, if the load is short-circuited or overloaded, it is likely to damage the IC.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 - Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.