TOSHIBA BiCD Integrated Circuit Silicon Monolithic
 TB62755FPG

Step Up Type DC-DC Converter for White LED

The TB62755FPG is a high efficient Step-Up Type DC-DC Converter specially designed for constant current driving of White LED.

This IC can drive $2-8$ white LEDs connected series using a Li-ion battery.

This IC contains N-ch MOSFET Transistor for Coil-Switching, and LED current (I_{F}) is set with an external resistor.

This IC is especially for driving back light white LEDs in LCD of PDA, Cellular Phone, or Handy Terminal Equipment.

SON6-P-0202-0.50
Weight: 0.005 g (typ.)

Features

- $2-8$ white LEDs connected series (typ. 7LEDs)
- Variable LED current IF is set with a external resistor: 20 mA (typ.) @RSENS $=15 \Omega$
- Output power: Available for 800 mW LED loading (7LEDs, IF = Over 25 mA)
- High efficiency: 80% over (using recommended external parts)
- Output over voltage shutdown function
: Switching operation is shut downed when OVD terminal voltage is over 37 V (typ.).
- IC package: SON6-P-0202-0.50
- Switching frequency: 1.0 MHz (typ.)

Pin Assignment (top view)

Week 1 to 26

Week 27 to 53

Note: This IC could be destroyed in some case if amounted in 180° inverse direction.
Please be careful about IC direction in mounting.

Block Diagram

Pin Function

Pin No.	Symbol	Function Description
1	VIN	Supply voltage input terminal. $(2.8 \mathrm{~V}$ to 5.5 V$)$
2	OVD	Over voltage detection terminal. IC switching operation is disabled with detection over voltage. If the voltage returns to detection level or less, operation is enabled again.
3	SHDN	Voltage-input terminal for IC-enable/disable LED-IF. A high input on this pin enables the IC to operate while a low input causes it to shut down. The behavior of the IC is unpredictable if the input on the pin is undefined. Ensure that the pin is tied to either a high or low level.
4	FB	LED IF setting resistor connecting terminal.
5	GND	Ground terminal.
6	SW	Switch terminal for DC-DC converter. Nch MOSFET built-In.

I/O Equivalent Pin Circuits

1. VIN to GND

2. $\overline{\text { SHDN }}$

3. SW

4. OVD

5. FB

Usage Precautions

Protection in LED Opened Condition

The operation with OVD terminal is available for the protection in case LED circuit opened.
When the voltage of OVD terminal is over 37 V (typ.), Nch MOSFET switching operation is disabled in the IC. When the voltage of OVD terminal drops below 37 V (typ.), Nch MOSFET switching operation becomes available again.

If load of LED is detached, Nch MOSFET switching operation is disabled with detection of boost circuit voltage and the IC is protected from unexpected over voltage.

Setting of Capacitor

The recommended values are

$$
\mathrm{C}_{1}=2.2(\mu \mathrm{~F}) \text { or more, } \quad \mathrm{C}_{2}=1.0(\mu \mathrm{~F}) \text { or more }
$$

The capacitor of ceramic condenser tends to decrease when voltage is applied.
So, please select the appropriate capacitor in consideration of IC characteristics of withstand voltage and size.

Setting of I_{F}

Resistance connects between FB pin and GND.
The average current is set by this RSENS value and average current are obtained by the following equation.

$$
\mathrm{I}_{\mathrm{F}}(\mathrm{~mA})=\frac{300[\mathrm{mV}]}{\operatorname{RSENS}[\Omega]}
$$

Current value error is within $\pm 5 \%$.

Setting of External Inductor Size

Please select the inductor size with referring this table corresponding to each number of LEDs.
[Recommended inductor values]

LEDs	Inductor Size	Note
2 to 5	$10 \mu \mathrm{H}$	LED current $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Over 6	$22 \mu \mathrm{H}$	

Current Dimming Control

Recommended brightness control circuits are 4 types.
(1) Input PWM signal to $\overline{\text { SHDN }}$ terminal

IF can be adjusted with PWM signal by inputting it to SHDN terminal.

<<PWM signal frequency>>

- The recommended PWM signal frequency is from 100 Hz to 10 kHz . There is a possibility to arise the audible frequency in mounting to the board because it is within the auditory area. The greater the oscillation frequency is, the greater the error between the actual value and the theoretical value becomes.
<<Constant number of external condenser>>
- When the PWM signal is off, the time to drain C_{2} of charge depends on the constant number. And so, the actual value is little different from the theoretical value.
<<PWM input signal>>
- Set the amplitude of PWM signal within the range of $\overline{\text { SHDN }}$ terminal specification.
<<Rush current in inputting>>
- In case dimming by inputting the PWM signal to the $\overline{\text { SHDN }}$ terminal, this IC turns on and off repeatedly.
And the rush current, which provides the charge to C_{2}, arises in turning on. Take care in selecting the condenser.
<<Current value in control with PWM: Ideal equation>>

$$
\mathrm{I}_{\mathrm{F}}[\mathrm{~mA}]=\frac{300[\mathrm{mV}] \times \mathrm{ON} \text { Duty }[\%]}{\operatorname{RSENS}[\Omega]}
$$

<<Recommended application>>

(2) Input analog voltage to FB terminal

IF can be adjusted with analog voltage input to FB terminal.
This method is without repeating IC ON/OFF, and no need to consider holding rash current.

[Notice]

- LED current value goes over 100% of the current set with RSENS, if the input analog voltage is between 0 V to 300 mV (typ.).
<<Recommended application>>

(3) Input PWM signal with filtering to FB terminal

IF can be adjusted with filtering PWM signal using RC filter indicated in recommended circuit, because the PWM signal can be regard as analog voltage after filtering.
This method is without repeating IC ON/OFF, and no need to consider holding rash current.

[Notice]

- LED current value goes over 100% of the current set with RSENS, if the input voltage after filtering is between 0 V to 300 mV (typ.).
<<Recommended application>>

(4) Input logic signal

IF can be adjusted with logic signal input as indicated in recommended circuit.
The resistor connected the ON-State Nch MOSFET drain and RSENS determines IF.
Average of setting current $\mathrm{IF}(\mathrm{mA})$ is next, approximately.

$$
\mathrm{IF}_{\mathrm{F}}[\mathrm{~mA}]=\frac{300[\mathrm{mV}]}{\text { Sum of resistor value }[\Omega]}
$$

<<Recommended application>>

M1	M2	LED Current
OFF	OFF	$\frac{300[m V]}{\operatorname{RSENS}[\Omega]}$
ON	OFF	$300[\mathrm{mV}] \times \frac{\operatorname{RSENS}[\Omega]+\mathrm{R} 1[\Omega]}{\operatorname{RSENS}[\Omega] \times \operatorname{R1}[\Omega]}$
OFF	ON	$300[\mathrm{mV}] \times \frac{\operatorname{RSENS}[\Omega]+\mathrm{R} 2[\Omega]}{\operatorname{RSENS}[\Omega] \times \operatorname{R2}[\Omega]}$
ON	ON	$300[\mathrm{mV}] \times \frac{\operatorname{RSENS}[\Omega] \times \mathrm{R} 1[\Omega]+\operatorname{RSENS}[\Omega] \times \mathrm{R} 2[\Omega]+\mathrm{R} 1[\Omega] \times \mathrm{R} 2[\Omega]}{\operatorname{RSENS}[\Omega] \times \mathrm{R} 1[\Omega] \times \mathrm{R} 2[\Omega]}$

Absolute Maximum Ratings ($\mathrm{Ta}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ if without notice)

Characteristics	Symbol	Rating	Unit
Power supply voltage	VIN	-0.3 to +6.0	V
Input voltage	VIN ($\overline{\text { SHDN }}$)	-0.3 to $+\mathrm{VIN}+0.3$ (Note 3)	V
Switching terminal voltage	V ${ }_{\text {(}}(\mathrm{SW})$	-0.3 to +40	V
Switching terminal current	Io (SW)	1500	mA
Power dissipation	PD	2.4 (Note 1)(Note 2) (Exposed Pad mounting)	W
Thermal resistance	$\mathrm{R}_{\text {th (j-a) }}$	$\begin{gathered} 52(\text { Note 1) } \\ \text { (Exposed Pad mounting) } \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operation temperature range	Topr	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Maximum junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$

Note 1: PCB Condition : $76.2 \times 114.3 \times 1.6 \mathrm{~mm}$, JEDEC (4 layers)
Note 2: The power dissipation decreases the reciprocal of the saturated thermal resistance (1/Rth(j-a)) for each degree $\left(1^{\circ} \mathrm{C}\right)$ that the ambient temperature is exceeded $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$.
Note 3: Ensure that the supply voltage never exceeds 6.0 V .
Operating Condition ($\mathbf{T a}=-40$ to $85^{\circ} \mathrm{C}$ if without notice)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Power supply voltage	VIN	-	-	2.8	-	5.5	V
LED current	I_{F}	-	$\mathrm{VIN}=3.6 \mathrm{~V}, \mathrm{RSENS}=15 \Omega$ 7 white LEDs, $\mathrm{Ta}=25^{\circ} \mathrm{C}$	-	20	-	mA

Electrical Characteristics ($\mathbf{T a}=\mathbf{2 5 ^ { \circ }} \mathbf{C}, \mathrm{VIN}=2.8$ to 5.5 V if without notice)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Power supply voltage	VIN	-	-	2.8	-	5.5	V
Operating consumption current	IIN (ON)	1	$\mathrm{VIN}=3.6 \mathrm{~V}, \mathrm{RSENS}=15 \Omega$	-	0.6	0.9	mA
Quiescent consumption current	IIN (OFF)	2	$\mathrm{VIN}=3.6 \mathrm{~V}, \quad \mathrm{~V}_{\overline{\text { SHDN }}}=0 \mathrm{~V}$	-	0.5	1.0	$\mu \mathrm{A}$
$\overline{\text { SHDN }}$ terminal " H " level input voltage	$\mathrm{V}_{\overline{\text { SHDN }}}$	3	-	1.3	-	VIN	V
$\overline{\text { SHDN }}$ terminal " L " level input voltage	$V_{\text {SHDNL }}$	3	-	0	-	0.4	V
$\overline{\text { SHDN }}$ terminal current	I $\overline{\text { SHDN }}$	4	$\begin{aligned} & \mathrm{VIN}=3.6 \mathrm{~V}, \\ & \mathrm{~V} \overline{\mathrm{SHDN}}=3.6 \mathrm{~V} \text { or } 0 \mathrm{~V} \end{aligned}$	-	0	1.0	$\mu \mathrm{A}$
Integrated MOS- T_{r} switching frequency	fosc	5	$\mathrm{VIN}=3.6 \mathrm{~V}, \quad \mathrm{~V}_{\overline{\text { SHDN }}}=3.6 \mathrm{~V}$	0.77	1.0	1.43	MHz
Switching terminal leak current	$\mathrm{I}_{\text {oz }}(\mathrm{SW})$	6	-	-	0.5	1	$\mu \mathrm{A}$
FB terminal feedback voltage	V_{FB}	7	$\begin{aligned} & \text { VIN }=3.6 \mathrm{~V}, \text { RSENS }=15 \Omega \\ & \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{~L}=22 \mu \mathrm{H} \end{aligned}$	285	300	315	mV
		7	$\begin{aligned} & \mathrm{VIN}=4.2 \mathrm{~V}, \mathrm{RSENS}=150 \Omega \\ & \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{~L}=22 \mu \mathrm{H} \end{aligned}$	285	300	315	mV
FB terminal line regulation	$\Delta \mathrm{V}_{\mathrm{FB}}$	7	$\begin{aligned} & \mathrm{VIN}=3.6 \mathrm{~V} \text { (typ.) } \\ & \mathrm{VIN}=3.0 \text { to } 5.0 \mathrm{~V} \end{aligned}$	-5	-	5	\%
FB terminal current	$\mathrm{I}_{\text {FB }}$	8	$\begin{aligned} & \mathrm{VIN}=3.6 \mathrm{~V}, \\ & \mathrm{~V} \overline{\mathrm{SHDN}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=300 \mathrm{mV} \\ & \hline \end{aligned}$	-	0.02	-	$\mu \mathrm{A}$
OVD terminal detect voltage	VovD	9	-	34.5	37	39.5	V
OVD terminal leakage current	lovd	10	$\mathrm{V}_{\text {OVD }}=30 \mathrm{~V}$	-	0.5	1	$\mu \mathrm{A}$

TEST Circuit

1. $\mathrm{I}_{\mathrm{N}(\mathrm{ON})}$

2. $\mathbf{V}_{\mathbf{S H D N}}, \mathbf{V}_{\mathbf{S H D N}}$

3. fosc

4. I_{IN} (OFF)

5. I $\overline{\text { SHDN }}$

6. $\mathrm{I}_{\mathrm{Oz}}(\mathrm{SW})$

7. $V_{F B}, \Delta V_{F B}{ }^{* 1}$

8. $\mathrm{V}_{\mathrm{OVD}}{ }^{* 1}$

9. I_{FB}

10. IovD

*1: The locations of the pins differ from the actual ones to simplify the diagram. See page 1 for the actual pin locations.

Package Dimensions

SON6-P-0202-0.50

Weight: 0.005 g (typ.)

Notes on Contents

1. Block Diagrams

Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purposes.

2. Equivalent Circuits

The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

3. Timing Charts

Timing charts may be simplified for explanatory purposes.

4. Application Circuits

The application circuits shown in this document are provided for reference purposes only. Thorough evaluation is required, especially at the mass production design stage.
Toshiba does not grant any license to any industrial property rights by providing these examples of application circuits.

5. Test Circuits

Components in the test circuits are used only to obtain and confirm the device characteristics. These components and circuits are not guaranteed to prevent malfunction or failure from occurring in the application equipment.

IC Usage Considerations Notes on handling of ICs

[1] The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings.
Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.
[2] Use an appropriate power supply fuse to ensure that a large current does not continuously flow in case of over current and/or IC failure. The IC will fully break down when used under conditions that exceed its absolute maximum ratings, when the wiring is routed improperly or when an abnormal pulse noise occurs from the wiring or load, causing a large current to continuously flow and the breakdown can lead smoke or ignition. To minimize the effects of the flow of a large current in case of breakdown, appropriate settings, such as fuse capacity, fusing time and insertion circuit location, are required.
[3] If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the design to prevent device malfunction or breakdown caused by the current resulting from the inrush current at power ON or the negative current resulting from the back electromotive force at power OFF. IC breakdown may cause injury, smoke or ignition.
Use a stable power supply with ICs with built-in protection functions. If the power supply is unstable, the protection function may not operate, causing IC breakdown. IC breakdown may cause injury, smoke or ignition.
[4] Do not insert devices in the wrong orientation or incorrectly. Make sure that the positive and negative terminals of power supplies are connected properly. Otherwise, the current or power consumption may exceed the absolute maximum rating, and exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.
In addition, do not use any device that is applied the current with inserting in the wrong orientation or incorrectly even just one time.
[5] Carefully select external components (such as inputs and negative feedback capacitors) and load components (such as speakers), for example, power amp and regulator. If there is a large amount of leakage current such as input or negative feedback condenser, the IC output DC voltage will increase. If this output voltage is connected to a speaker with low input withstand voltage, overcurrent or IC failure can cause smoke or ignition. (The over current can cause smoke or ignition from the IC itself.) In particular, please pay attention when using a Bridge Tied Load (BTL) connection type IC that inputs output DC voltage to a speaker directly.

Points to remember on handling of ICs

(1) Heat Radiation Design

In using an IC with large current flow such as power amp, regulator or driver, please design the device so that heat is appropriately radiated, not to exceed the specified junction temperature (T_{J}) at any time and condition. These ICs generate heat even during normal use. An inadequate IC heat radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown. In addition, please design the device taking into considerate the effect of IC heat radiation with peripheral components.
(2) Back-EMF

When a motor rotates in the reverse direction, stops or slows down abruptly, a current flow back to the motor's power supply due to the effect of back-EMF. If the current sink capability of the power supply is small, the device's motor power supply and output pins might be exposed to conditions beyond maximum ratings. To avoid this problem, take the effect of back-EMF into consideration in system design.

About solderability, following conditions were confirmed Solderability

(1) Use of Sn-37Pb solder Bath solder bath temperature: $230^{\circ} \mathrm{C}$
dipping time: 5 seconds
the number of times: once
use of R-type flux
(2) Use of $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder Bath solder bath temperature: $245^{\circ} \mathrm{C}$ dipping time: 5 seconds the number of times: once use of R-type flux

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document. Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact ("Unintended Use"). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this document.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.

