TOSHIBA BiCD Digital Integrated Circuit Silicon Monolithic

TB62736FUG

Step-up Type DC-DC Converter for White LEDs

The TB62736FUG is a high efficiency step-up type DC-DC converter that is designed especially for use as a constant current driver of white LEDs.
It is possible to drive 2 to 6 white LEDs connected in series using a lithium-ion battery.
This IC incorporates an N-ch-MOS FET transistor required for switching of an external inductor.
The forward current of the LEDs can be controlled by an external resistor.
This IC is best suited for use as a driver of white LED back lighting in color LCDs in PDAs, cellular phones and handy terminal devices.

Weight: 0.016 g (typ.)

Features

- Brightness control function with changing drive current:

LED current $\mathrm{IF}_{\mathrm{F}}=25 \%$ to 100% (analog input)

- LED current values controlled by external resistance
: 20 mA (typ.) @ RSENS=16 Ω
- Output power : 400 mW
- High efficiency : maximum 87% (when used with components as recommended herein)
- Switching Frequency : 1.1 MHz (Typ.)
- IC package: SSOP6-P-0.95B (SOT23-6)

Block Diagram

Pin Assignment (top view)

Note 1:The IC may break if mounted 180 degrees in reverse. Ensure the device is correctly orientated before assembly.

Pin Functions

No.	Symbol	
1	$\overline{S H D N}$	Input pin for IC ON/OFF control and variable LED IF. 0 to $0.5 \mathrm{~V}:$ Shutdown Mode (IC shutdown) 1.0 V to $2.5 \mathrm{~V}: \mathrm{I}_{\mathrm{F}}=25$ to 100% Variable Over $2.5 \mathrm{~V}: \mathrm{I}_{\mathrm{F}}=100 \%$ PWM signal input for I_{F} control (see p.5)
2	NC	No Connection or Connected to GND (Note 2)

Note 2:The NC terminal is not connected to the internal circuit, so placing it on another terminal pattern does not represent a problem.

I/O Equivalent Pin Circuits

1. $\overline{\mathrm{SHDN}}$ pin
2. $N C$ pin

NC

The NC pin is not connected to any internal circuit, so placing it on another terminal pattern does not present a problem.
4. FB pin

Protection at the time of LED opening

The zener diode in the application circuit example is necessary for the provision of over-voltage protection in the event the LED becomes open. As the IC does not incorporate a voltage protection circuit, it is strongly advised that a zener diode be connected.

The zener diode should satisfy the following conditions:
i) Less than maximum output voltage of 24 V
ii) Greater than the total series LED V_{F}
iii) Less than the maximum output capacitance C_{2}.

Moreover, by connecting a protection circuit such as R_ZD in the figure below, it is possible to control the output current when the LED becomes open, and to use a zener diode of lower tolerance.

An example of IZD control by R_ZD connection. $($ RSENS $=16 \Omega)$

R_ZD (Ω)	IZD (mA)
500	Around 0.6
100	Around 2.8

In order to avoid adverse effects on driver characteristics,
Toshiba recommends a resistance of 500 ohms or less.

Protection circuit application

Output-side Capacitor Setting

It is recommended that the value of C_{2} be equal to, or greater than $1.0(\mu \mathrm{~F})$.

External Inductor Size Setting

For each number of LEDs, the selected inductance should be greater than the value indicated in the table below.

Number of LEDs	Inductance (Unit: $\mu \mathrm{H})$	Note
2	4.7	
3	6.8	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
4	10	
5		
6		

Control of I_{F}

The resistance RSENS is connected between the FB pin and the GND pin.
The average current is controlled by the RSENS value, and calculated using the following equation:

$$
\mathrm{IF}_{\mathrm{F}}(\mathrm{~mA})=[325 \mathrm{mV} / \operatorname{RSENS}(\Omega)]
$$

Margin of error is $\pm 5 \%$.

Current control using SHDN pin

The IF current set by the RSENS pin resistance can be varied in the range of 25 to 100%.
Linearity error at VA conversion is $\pm 10 \%$.

$\overline{\text { SHDN Voltage }}$	V $\overline{\mathrm{SHDN}}=0 \mathrm{~V}$ to 0.5 V	V $\overline{\mathrm{SHDN}}=1 \mathrm{~V}$ to 2.5 V	V $\overline{\mathrm{SHDN}}>2.5 \mathrm{~V}$	Note
IF Valuable Rate	0	$25-100$	100	UNIT $: \%$

Dimming using PWM signal input

A dimming function can also by applied using a PWM signal.
[Notes]
-When using a PWM signal, the minimum pulse width of the PWM should be greater than 33ps.
-Duty ratio of PWM function should be set at 10% to 90%.
\cdot The recommended PWM frequency should be 100 Hz to 10 kHz .
<<Output current is calculated using the following equation>>

$$
\mathrm{IF}(\mathrm{~mA})=\frac{325[\mathrm{mV}] \times \text { ON Duty }[\%]}{\operatorname{RSENS}[\Omega]}
$$

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{a}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$, unless otherwise specified)

Characteristics	Symbol	Ratings	Unit
Power supply voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to 6.0	V
Input voltage	$V_{\text {in }}$	-0.3 to $\mathrm{V}_{\text {IN }}+0.3$ (Note 3)	V
Switching pin voltage	$\mathrm{V}_{\mathrm{O}}(\mathrm{SW})$	-0.3 to 24	V
Power Dissipation	PD	0.41 (IC only)	W
		0.47 (IC mounted on PCB)(Note 4)	
Thermal resistance	$\mathrm{R}_{\text {th }}(\mathrm{j}-\mathrm{a})$	300 (IC only)	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		260 (IC mounted on PCB)	
Operating temperature range	Topr	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Maximum junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$

Note 3: However, do not exceed 6 V .
Note 4: Power dissipation is reduced by $3.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from the maximum rating for every $1^{\circ} \mathrm{C}$ exceeding the ambient temperature of $25^{\circ} \mathrm{C}$ (when the $I C$ is mounted on a PCB).

Recommended Operating Condition ($\mathrm{T}_{\mathrm{a}}=\mathbf{- 4 0}$ to $85^{\circ} \mathrm{C}$, unless otherwise specified)

Characteristics	Symbol	Test Conditions	Min	Typ.	Max	Unit
Power supply voltage	$V_{\text {IN }}$	-	2.8	-	5.5	V
$\overline{\text { SHDN }}$ pin H level input voltage	$\mathrm{V} \overline{\text { SHDN }}(\mathrm{H})$	-	2.7	-	VIN	V
$\overline{\text { SHDN }}$ pin L level input voltage	V SHDN (L)	-	0	-	0.5	V
$\overline{\text { SHDN }}$ pin input pulse width	tpw	ON/OFF duty width	33	-	-	$\mu \mathrm{S}$
LED current (Average value)	$\mathrm{I}_{\mathrm{F} 1}$	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{R}_{\mathrm{SENS}}=16 \Omega \\ 4 \mathrm{LEDS}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \end{gathered}$	-	20	-	mA

Electrical Characteristics ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V , unless otherwise specified)

Characteristics	Symbol	Test Conditions	Min	Typ.	Max	Unit
Power supply voltage	V_{IN}	-	2.8	-	5.5	V
Operating consumption current	IIN (ON)	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, RSENS $=16 \Omega$	-	0.9	1.5	mA
Standby consumption current	IIN (OFF)	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{SHDN}}=0 \mathrm{~V}$	-	0.5	1.0	$\mu \mathrm{A}$
$\overline{\text { SHDN }}$ pin current	ISHDN	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}$ SHDN $=3.6 \mathrm{~V}$ or 0 V	-10	0	10	$\mu \mathrm{A}$
Integrated MOS-FET switching frequency	fosc	V IN $=3.6 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{SHDN}}=3.6 \mathrm{~V}$	0.77	1.1	1.43	MHz
$\overline{\text { SHDN }}$ pin H level input voltage	$\mathrm{V} \overline{\mathrm{SHDN}}(\mathrm{H})$	-	2.7	-	VIN	V
$\overline{\text { SHDN }}$ pin L level input voltage	V $\overline{\text { HDD }}$ (L)	-	0	-	0.5	V
Switching pin protection voltage	$\mathrm{V}_{\mathrm{O}}(\mathrm{SW})$	-	-	25	-	V
Switching pin current	lo (SW)	-	-	400	-	mA
Switching pin leakage current	IOZ (SW)	-	-	0.5	1	$\mu \mathrm{A}$
FB pin feedback voltage	$V_{\text {FB }}$	$\begin{gathered} \mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{R}_{\text {SENS }}=16 \Omega \\ \mathrm{~L}=4.7 \mu \mathrm{H} \end{gathered}$	308	325	342	mV
FB pin line regulation	$\Delta \mathrm{V}_{\mathrm{FB}}$	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V} \text { center } \\ \mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V} \text { to } 5.0 \mathrm{~V} \end{gathered}$	-5	-	5	\%

1. Application Circuit Example and Measurement Data (reference data)

<Measurement Data>

Efficiency in the range of $\mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency (\%)
2 LEDs	82.60 to 88.46	86.29
3 LEDs	82.69 to 87.78	85.95
4 LEDs	80.73 to 86.22	83.05
5 LEDs	80.73 to 87.28	83.45
6 LEDs	79.78 to 85.55	81.15

Output current in the range of $\mathrm{V}_{\mathrm{IN}}=3.0$ to $5.0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}\right.$ typ. $)$

	Output Current (mA)	Tolerance (\%)	
	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$	Min	Max
2 LEDs	21.13	-3.50	1.77
3 LEDs	20.60	-1.95	1.38
4 LEDs	20.87	-1.75	1.11
5 LEDs	20.06	-1.81	1.15
6 LEDs	19.90	-1.95	1.28

Note: These application examples are provided for reference only. Thorough evaluation and testing should be implemented when designing your application's mass production design.

2. Application Circuit Example and Measurement Data (reference data)

<Measurement Data>

Efficiency in the range of $\mathrm{V} \mathrm{IN}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency (\%)
2 LEDs	83.10 to 88.60	86.55
3 LEDs	81.32 to 86.47	84.54
4 LEDs	79.15 to 84.63	81.30
5 LEDs	79.72 to 86.39	82.87
6 LEDs	78.91 to 85.10	80.47

Output current in the range of $\mathrm{V}_{\mathrm{IN}}=3.0$ to $5.0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}\right.$ typ. $)$

	Output Current (mA) $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$	Tolerance (\%)	
		Min	Max
2 LEDs	21.17	-3.32	1.73
3 LEDs	20.85	-1.95	1.38
4 LEDs	20.56	-1.79	1.15
5 LEDs	20.10	-1.82	1.22
6 LEDs	19.95	-1.94	1.26

Note: These application examples are provided for reference only. Thorough evaluation and testing should be implemented when designing your application's mass production design.

3. Application Circuit Example and Measurement Data (reference data)

Evaluation conditions
L1 : LQH2M series
(Murata Manufacturing Co.,Ltd.)
(Size: $2.0 \mathrm{~mm} \times 1.6 \mathrm{~mm} \times 0.95 \mathrm{~mm}$)
C_{1} : C2012JB1E225K (TDK Corp.)
C_{2} : C2012JB1E105K (TDK Corp.)
S-Di : CUS02 1 A/30 V (TOSHIBA Corp.)
WLEDs: NSCW215T (NICHIA Corp.)

<Measurement Data>

Efficiency in the range of V IN $=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency (\%)	
2 LEDs	82.37 to 88.70	86.38	
3 LEDs	80.19 to 86.55	84.12	
4 LEDs	78.11 to 84.54	80.16	
5 LEDs	74.79 to 84.94	79.94	
6 LEDs	74.14 to 83.47	77.17	
Output current in the range of $\mathrm{V}_{\text {IN }}=3.0$ to $5.0 \mathrm{~V}\left(\mathrm{~V}_{\text {IN }}=3.6 \mathrm{~V}\right.$ typ. $)$			
	Output Current (mA)$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$	Tolerance (\%)	
		Min	Max
2 LEDs	21.19	-3.26	1.69
3 LEDs	20.90	-1.87	2.17
4 LEDs	20.63	-1.78	1.01
5 LEDs	20.09	-1.88	1.25
6 LEDs	19.93	-1.99	1.07

Note: These application examples are provided for reference only. Thorough evaluation and testing should be implemented when designing your application's mass production design.

4. Application Circuit Example and Measurement Data (reference data)

<Measurement Data>
Efficiency in the range of $\mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency (\%)	
2 LEDs	79.85 to 86.97	84.02	
3 LEDs	80.19 to 85.32	83.39	
4 LEDs	78.77 to 83.60	80.69	
5 LEDs	79.72 to 86.39	82.87	
6 LEDs	78.91 to 85.10	80.49	
Output current in the range of $\mathrm{V}_{\mathrm{IN}}=3.0$ to $5.0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}\right.$ typ.)			
	Output Current (mA)$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$	Tolerance (\%)	
		Min	Max
2 LEDs	21.19	-3.08	1.67
3 LEDs	20.89	-1.86	1.33
4 LEDs	20.64	-1.68	1.11
5 LEDs	20.10	-1.82	1.22
6 LEDs	19.95	-1.94	1.26

Note: These application examples are provided for reference only. Thorough evaluation and testing should be implemented when designing your application's mass production design.

5. Application Circuit Example and Measurement Data (reference data)

Note: These application examples are provided for reference only. Thorough evaluation and testing should be implemented when designing your application's mass production design.

Package Dimensions

SSOP6-P-0.95B
Unit: mm

Weight: 0.016 g (typ.)

Notes on Contents

1. Block Diagrams

Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purposes.

2. Equivalent Circuits

The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

3. Timing Charts

Timing charts may be simplified for explanatory purposes.

4. Application Circuits

The application circuits shown in this document are provided for reference purposes only. Thorough evaluation is required, especially at the mass production design stage.
Toshiba does not grant any license to any industrial property rights by providing these examples of application circuits.

5. Test Circuits

Components in the test circuits are used only to obtain and confirm the device characteristics. These components and circuits are not guaranteed to prevent malfunction or failure from occurring in the application equipment.

IC Usage Considerations Notes on handling of ICs

[1] The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings.
Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.
[2] Use an appropriate power supply fuse to ensure that a large current does not continuously flow in case of over current and/or IC failure. The IC will fully break down when used under conditions that exceed its absolute maximum ratings, when the wiring is routed improperly or when an abnormal pulse noise occurs from the wiring or load, causing a large current to continuously flow and the breakdown can lead smoke or ignition. To minimize the effects of the flow of a large current in case of breakdown, appropriate settings, such as fuse capacity, fusing time and insertion circuit location, are required.
[3] If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the design to prevent device malfunction or breakdown caused by the current resulting from the inrush current at power ON or the negative current resulting from the back electromotive force at power OFF. IC breakdown may cause injury, smoke or ignition.
Use a stable power supply with ICs with built-in protection functions. If the power supply is unstable, the protection function may not operate, causing IC breakdown. IC breakdown may cause injury, smoke or ignition.
[4] Do not insert devices in the wrong orientation or incorrectly.
Make sure that the positive and negative terminals of power supplies are connected properly.
Otherwise, the current or power consumption may exceed the absolute maximum rating, and exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.
In addition, do not use any device that is applied the current with inserting in the wrong orientation or incorrectly even just one time.
[5] Carefully select external components (such as inputs and negative feedback capacitors) and load components (such as speakers), for example, power amp and regulator.
If there is a large amount of leakage current such as input or negative feedback condenser, the IC output DC voltage will increase. If this output voltage is connected to a speaker with low input withstand voltage, overcurrent or IC failure can cause smoke or ignition. (The over current can cause smoke or ignition from the IC itself.) In particular, please pay attention when using a Bridge Tied Load (BTL) connection type IC that inputs output DC voltage to a speaker directly.

Points to remember on handling of ICs

(1) Heat Radiation Design

In using an IC with large current flow such as power amp, regulator or driver, please design the device so that heat is appropriately radiated, not to exceed the specified junction temperature (T_{J}) at any time and condition. These ICs generate heat even during normal use. An inadequate IC heat radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown. In addition, please design the device taking into considerate the effect of IC heat radiation with peripheral components.
(2) Back-EMF

When a motor rotates in the reverse direction, stops or slows down abruptly, a current flow back to the motor's power supply due to the effect of back-EMF. If the current sink capability of the power supply is small, the device's motor power supply and output pins might be exposed to conditions beyond maximum ratings. To avoid this problem, take the effect of back-EMF into consideration in system design.

About solderability, following conditions were confirmed
Solderability
(1) Use of $\mathrm{Sn}-37 \mathrm{~Pb}$ solder Bath solder bath temperature: $230^{\circ} \mathrm{C}$ dipping time: 5 seconds the number of times: once use of R-type flux
(2) Use of $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder Bath solder bath temperature: $245^{\circ} \mathrm{C}$ dipping time: 5 seconds the number of times: once use of R-type flux

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document. Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact ("Unintended Use"). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this document.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.

