SKM 300 MLI 066 T

SEMITRANS® 5

Trench IGBT Modules

SKM 300 MLI 066 T

Target Data

Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- Integrated NTC temperature sensor

Typical Applications

- UPS
- 3 Level Inverter

Remarks

 Case temperature limited to T_c =125°C max, recommended T_{op} = -40..+150°C

Absolute Maximum Ratings $T_{case} = 25^{\circ}C$, unless otherwise specified						
Symbol	Conditions		Values	Units		
IGBT						
V _{CES}	T _j = 25 °C		600	V		
I _C	T _j = 175 °C	T _c = 25 °C	400	Α		
		T _c = 80 °C	300	Α		
I _{CRM}	I _{CRM} =2xI _{Cnom}		600	Α		
V_{GES}			± 20	V		
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 15$ V; $V_{CES} < 600$ V	T _j = 150 °C	6	μs		
Inverse Di	ode					
I _F	T _j = 150 °C	T _c = 25 °C	324	Α		
		T _c = 80 °C	211	Α		
I _{FRM}	I _{FRM} =2xI _{Fnom}		420	Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	2100	Α		
Freewhee	ling Diode					
I _F	T _j = 150 °C	$T_c = 25 ^{\circ}C$	324	Α		
		T _c = 80 °C	211	Α		
I _{FRM}	I _{FRM} =2xI _{Fnom}		420	Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	2100	Α		
Module						
I _{t(RMS)}			500	Α		
T _{vj}			- 40 + 175	°C		
T _{stg}			- 40 + 125	°C		
V _{isol}	AC, 1 min.		2500	V		

Character	25°C, unless otherwise specified					
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 4.8 \text{ mA}$		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,015	mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			1200	nA
V_{CE0}		T _j = 25 °C		0,9	1	٧
		T _j = 150 °C		0,85	0,9	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		1,8	3	mΩ
		T _j = 150°C		2,7	3,8	$\text{m}\Omega$
V _{CE(sat)}	I _{Cnom} = 300 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,45	1,9	V
		T _j = 150°C _{chiplev} .		1,7	2,1	V
C _{ies}				18,4		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		1,14		nF
C _{res}				0,54		nF
R _{Gint}	T _j = °C			1		Ω
t _{d(on)}						ns
t _r	$R_{Gon} = 1 \Omega$	$V_{CC} = 300V$				ns
E _{on}		I _C = 300A		1,56		mJ
t _{d(off)}	$R_{Goff} = 2 \Omega$	T _j = 150 °C				ns
t _f		$V_{GE} = -8V/+15V$				ns
E _{off}				9,4		mJ
R _{th(j-c)}	per IGBT			0,15		K/W

SKM 300 MLI 066 T

Trench IGBT Modules

SKM 300 MLI 066 T

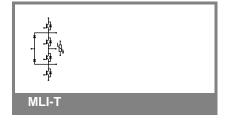
Target Data

Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- Integrated NTC temperature sensor

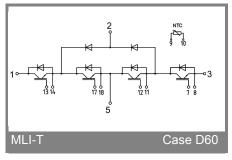
Typical Applications

- UPS
- 3 Level Inverter


Remarks

 Case temperature limited to T_c =125°C max, recommended T_{op} = -40..+150°C

Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D	Diode					•
$V_F = V_{EC}$	I_{Fnom} = 245 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,35	1,6	V
		$T_j = 125 ^{\circ}C_{chiplev.}$ $T_j = 25 ^{\circ}C$		1,35	1,6	V
V_{F0}				1	1,1	V
		$T_j = 125 ^{\circ}\text{C}$ $T_j = 25 ^{\circ}\text{C}$		0,9	1	V
r _F				1,42	2	mΩ
		T _j = 125 °C T _j = 125 °C		1,8	2,4	mΩ
I _{RRM} Q _{rr}	I _F = 245 A	T _j = 125 °C				A µC
E _{rr}	V _{GE} = -8 V; V _{CC} = 300 V					mJ
R _{th(j-c)D}	per diode			0,26		K/W
	eling diode (Neutral (Clamp Diode)				
$V_F = V_{EC}$	I_{Fnom} = 245 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev} .		1,35	1,6	V
		$T_j = 125 ^{\circ}C_{chiplev.}$ $T_j = 25 ^{\circ}C$		1,35	1,6	V
V_{F0}		T _j = 25 °C		1	1,1	V
		T _j = 125 °C		0,9	1	V
r _F		T _j = 25 °C		1,42	2	V
		T _j = 125 °C T _j = 125 °C		1,8	2,4	V
I _{RRM} Q _{rr}	I _F = 245 A	T _j = 125 °C				A µC
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V			5		mJ
R _{th(j-c)FD}	per diode			0,26		K/W
M_s	to heat sink M6		3		5	Nm
M _t	to terminals M6		2,5		5	Nm
w					310	g
	ture sensor					_
R ₁₀₀	T_s =100°C (R_{25} =5kΩ)			493±5%		Ω
						K


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SKM 300 MLI 066 T

