LIXYS

Symbol

V_{CES}

 V_{cgr}

 \mathbf{V}_{ges}

 V_{GEM}

I

I_{с90}

I_{см}

 P_c

 \mathbf{T}_{1}

Т_{лм}

I GES

 $V_{CE(sat)}$

SSOA

(RBSOA)

HiPerFAST[™] IGBT

Test Conditions

Continuous

Transient

 $T_c = 25^{\circ}C$

 $T_{c} = 90^{\circ}C$

 $T_c = 25^{\circ}C$

 $T_{c} = 25^{\circ}C, 1 \text{ ms}$

 $T_{\perp} = 25^{\circ}C$ to $150^{\circ}C$

 $T_{_{\perp}} = 25^{\circ}C$ to $150^{\circ}C$; $R_{_{GE}} = 1 \text{ M}\Omega$

 $V_{GE} = 15 \text{ V}, \text{ } \text{T}_{VI} = 125^{\circ}\text{C}, \text{ } \text{R}_{G} = 22 \text{ } \Omega$

Clamped inductive load, $L = 100 \mu H$

IXGH 24N60A

V_{CES} 600 V C25 CE(sat)

V

V

V

V

А

А

А

А

Maximum Ratings

600

600

±20

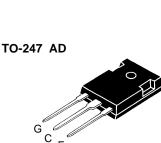
±30

48

24

96

150


I_{CM} = 48

@ 0.8 V_{CES}

-55 ... +150

L fi	

=	48 A
=	2.7 V
=	275 ns

G = Gate, E = Emitter,

C = Collector,TAB = Collector

Features

- · International standard package JEDEC TO-247 AD
- · High frequency IGBT
- 2nd generation HDMOS[™] process
- · High current handling capability
- MOS Gate turn-on
 - drive simplicity

Applications

- · AC motor speed control
- · DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- · Switch-mode and resonant-mode power supplies

Advantages

- · Easy to mount with 1 screw (isolated mounting screw hole)
- · Switching speed for high frequency applications
- · High power density

$\mathsf{T}_{_{\mathrm{stg}}}$ Mounting torque (M3) 1.13/10 Nm/lb.in. Mď Weight 6 g 300 °C Maximum lead temperature for soldering 1.6 mm (0.062 in.) from case for 10 s **Test Conditions** Symbol **Characteristic Values** $(T_1 = 25^{\circ}C, unless otherwise specified)$ min. typ. | max. I_{c} = 250 μ A, V_{ge} = 0 V **BV**_{CES} 600 V $V_{GE(th)}$ $I_c = 250 \ \mu\text{A}, \ V_{ce} = V_{ge}$ 2.5 5 V $\begin{array}{l} \mathsf{V}_{_{\mathsf{CE}}} &= 0.8 \bullet \mathsf{V}_{_{\mathsf{CES}}} \\ \mathsf{V}_{_{\mathsf{GE}}} &= 0 \ \mathsf{V} \end{array}$ T_J = 25°C \mathbf{I}_{CES} 200 μA

T₁ = 125°C

 $V_{CE} = 0 V, V_{GE} = \pm 20 V$

 $I_{c} = I_{c_{90}}, V_{g_{E}} = 15 \text{ V}$

W 150 -55 ... +150 °C

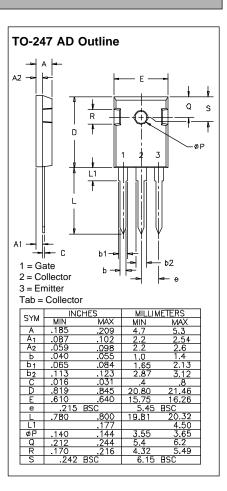
°C

°C

1 mΑ

nA

V


±100

2.7

IXGH 24N60A

Symbol		haracteristic Values otherwise specified)		
	min.		max.	,
g _{fs}	$ I_{\rm C} = I_{\rm C90}; V_{\rm CE} = 10 \text{V}, \qquad 9 $	13		S
C _{ies})	1500		pF
C _{oes}	$V_{CE} = 25 \text{ V}, \text{ V}_{GE} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$	135		pF
C _{res}	}	40		pF
Q)	90	120	nC
Q _{ge}	$I_{c} = I_{c90}, V_{GE} = 15 \text{ V}, V_{CE} = 0.5 \text{ V}_{CES}$	11	15	nC
Q_{gc}	5	30	40	nC
t _{d(on)}	Inductive load, T ₁ = 25°C	25		ns
t _{ri}		15		ns
E _{on}	$ \begin{pmatrix} I_{c} = I_{c90}, V_{GE} = 15 \text{ V}, L = 100 \mu\text{H}, \\ V_{CE} = 0.8 V_{CES}, R_{G} = \text{R}_{off} = 10 \Omega \end{pmatrix} $	0.6		mJ
t _{d(off)}	Remarks: Switching times may increase	150	200	ns
t _{fi}	for V_{CE} (Clamp) > 0.8 • V_{CES} , higher T_{J} or	110	270	ns
E _{off}) increased R _g	1.5		mJ
t _{d(on)}	Junductive load T = 125°C	25		ns
t _{ri}	Inductive load, $T_J = 125^{\circ}C$ $I_C = I_{C90}, V_{CF} = 15 \text{ V}, \text{ L} = 100 \mu\text{H}$	15		ns
E _{on}	$V_{CE} = 0.8 V_{CES}, R_{G} = R_{off} = 10 \Omega$	0.8		mJ
t _{d(off)}	Remarks: Switching times may increase	250		ns
t _{fi}	for V_{ce} (Clamp) > 0.8 • V_{ces} , higher T _J or	400		ns
E _{off}	\int increased R _g	2.3		mJ
R _{thJC}			0.83	K/W
R _{thCK}		0.25		K/W

IXGH 24N60A characteristic curves are located on the IXGH 24N60AU1 data sheet.

IXYS reserves the right to change limits, test conditions, and dimensions.

IXYS MOSFETS and IGBTs are covered by one or more of the following U.S. patents: 4,835,592 4,881,106 5,017,508 5,049,961 5,187,117 5,486,715 4,850,072 4,931,844 5,034,796 5,063,307 5,237,481 5,381,025