Sensitive SCRs (0.8 - 10 Amps) #### **General Description** The Teccor Electronics, Inc. line of sensitive SCR semiconductors are half-wave unidirectional gate-controlled rectifiers (SCR-thyristor) which complement Teccor's line of power SCRs. This group of packages offers ratings of 0.8-10 amps, and 50-600 volts with gate sensitivities of 12-500 microamps. If gate currents in the 10-50 milliamp ranges are required, please consult Teccor's non-sensitive SCR technical data sheets. #### **Electrically Isolated Packages** This group of Teccor sensitive SCRs is available in a choice of three different product packages. The TO-220AB and TO-92 are electrically isolated where the case or tab is internally isolated to allow the use of low cost assembly and convenient packaging techniques. #### **Glass Passivation** Teccor's line of SCRs features glass-passivated junctions to ensure long term device reliability and parameter stability. Teccor's glass offers a rugged, reliable barrier against junction contamination. Tape-and-reel packaging is available for the TO-92 package. Please consult factory for more information. Variations of devices covered in this data sheet are available for custom design applications. Please consult the factory for more information. #### **Features** - Electrically-isolated To-220AB package - High Voltage Capability up to 600 Volts - High Surge Capability up to 100 Amps - · Glass Chip Passivation | | | | | \/ 0 | | | o | | | | | | | |------|-----------------------------|---------------------------------------|--------------|--|--|--|---------------------------|---------------------------|--|---|-----------------------|---------------------------|---| | | Part Number | I _T | | V _{DRM} & V _{RRM} | I GT | ı | DRM &
IRRM | | V _{TM} | V _{GT} | | | I _H | | ТҮРЕ | K G | Maximum
On-state
Current
(1) | | Repetitive
Peak
Off-state
Forward &
Reverse
Voltage | DC Gate
Trigger
Current
(2) (11) (17) | Trigger Current at Current V _{DRM} & V _{BRM} | | | Peak
On-state
Voltage
T _C = 25°C
(3) (10) | n-state Trigger Voltage Voltage = 25°C (4) (11) | | ge | DC Holding
Current
Initial
On-state
Current
=20mAmps
(5) (14)
(18) | | | TO-92 | Am | ps | | | μ A mps | | | | Volts | | | | | | See "Package
Dimensions" | RMS | AV | Volts | μAmps | T _C =
25°C | T _C =
100°C | T _C =
125°C | Volts | T _C =
- 65°C | T _C = 25°C | T _C =
100°C | m A mps | | | section for variations. | МА | | MIN | MAX | | MAX | | MAX | MA | | MIN | MAX | | | EC103A
EC103B | 0.8 | 0.51
0.51 | 100
200 | 200
200 | 1.0
1.0 | 50
50 | | 1.7 | 1.2 | 0.8
0.8 | .25
.25 | 5.0
5.0 | | | EC103C | 0.8 | 0.51 | 300 | 200 | 1.0 | 50 | | 1.7 | 1.2 | 0.8 | .25 | 5.0 | | | EC103D | 8.0 | 0.51 | 400 | 200 | 1.0 | 50 | | 1.7 | 1.2 | 0.8 | .25 | 5.0 | | | EC103E | 0.8 | 0.51 | 500 | 200 | 1.0 | 50 | | 1.7 | 1.2 | 0.8 | .25 | 5.0 | | | EC103M
EC103A1 | 0.8 | 0.51
0.51 | 600
100 | 200
12 | 2.0
1.0 | 100
50 | | 1.7 | 1.2 | 0.8 | .25
0.2 | 5.0
5.0 | | | EC103B1 | 0.8 | 0.51 | 200 | 12 | 1.0 | 50 | | 1.7 | 1.2 | 0.8 | 0.2 | 5.0 | | | EC103C1 | 0.8 | 0.51 | 300 | 12 | 1.0 | 50 | | 1.7 | 1.2 | 0.8 | 0.2 | 5.0 | | | EC103D1 | 0.8 | 0.51 | 400 | 12 | 1.0 | 50 | | 1.7 | 1.2 | 0.8 | 0.2 | 5.0 | | | EC103E1
EC103M1 | 0.8
0.8 | 0.51
0.51 | 500
600 | 12
12 | 1.0
2.0 | 50
100 | | 1.7
1.7 | 1.2
1.2 | 0.8 | 0.2
0.2 | 5.0
5.0 | | 0.8 | EC103A2 | 0.8 | 0.51 | 100 | 50 | 1.0 | 50 | | 1.7 | 1.2 | 0.8 | .25 | 5.0 | | Amp | EC103B2 | 0.8 | 0.51 | 200 | 50 | 1.0 | 50 | | 1.7 | 1.2 | 0.8 | .25 | 5.0 | | | EC103C2 | 0.8 | 0.51 | 300 | 50 | 1.0 | 50 | | 1.7 | 1.2 | 0.8 | .25 | 5.0 | | | EC103D2 | 0.8 | 0.51 | 400 | 50 | 1.0 | 50 | | 1.7 | 1.2 | 0.8 | .25 | 5.0 | | | EC103E2
EC103M2 | 0.8
0.8 | 0.51
0.51 | 500
600 | 50
50 | 1.0
2.0 | 50
100 | | 1.7 | 1.2 | 0.8 | .25
.25 | 5.0
5.0 | | | EC103M2
EC103A3 | 0.8 | 0.51 | 100 | 500 | 1.0 | 50 | | 1.7 | 1.2 | 0.8 | .25 | 5.0
8.0 | | | EC103B3 | 0.8 | 0.51 | 200 | 500 | 1.0 | 50 | | 1.7 | 1.2 | 0.8 | .25 | 8.0 | | | EC103C3 | 8.0 | 0.51 | 300 | 500 | 1.0 | 50 | | 1.7 | 1.2 | 0.8 | .25 | 8.0 | | | EC103D3 | 0.8 | 0.51 | 400 | 500 | 1.0 | 50 | | 1.7 | 1.2 | 0.8 | .25 | 8.0 | | | EC103E3
EC103M3 | 0.8
0.8 | 0.51
0.51 | 500
600 | 500
500 | 1.0
2.0 | 50
100 | | 1.7
1.7 | 1.2 | 0.8 | .25
.25 | 8.0
8.0 | | | EC103M3 | 0.8 | 0.51 | 100 | 200 | 2.0 | 100 | | 1.7 | 1.2 | 0.8 | .25
.25 | 6.U
15.0 | | | EC113B | 0.8 | 0.51 | 200 | 200 | 2.0 | 100 | | 1.7 | 1.2 | 0.8 | .25 | 15.0 | | | EC113C | 8.0 | 0.51 | 300 | 200 | 2.0 | 100 | | 1.7 | 1.2 | 0.8 | .25 | 15.0 | | | EC113D | 0.8 | 0.51 | 400 | 200 | 2.0 | 100 | | 1.7 | 1.2 | 8.0 | .25 | 15.0 | | | EC113E
EC113M | 0.8 | 0.51 | 500
500 | 200 | 2.0 | 100
100 | | 1.7
1.7 | 1.2 | 0.8 | ,25
25 | 15.0
15.0 | | | EC113A3 | 0.8
8.0 | 0.51
0.51 | 600
100 | 200
500 | 2.0 | 100 | | 1.7 | 1.2 | 0.8 | .25
.25 | 15.0
15.0 | | | EC113B3 | 0.8 | 0.51 | 200 | 500 | 2.0 | 100 | | 1.7 | 1.2 | 0.8 | .25 | 15.0 | | | EC113C3 | 8.0 | 0.51 | 300 | 500 | 2.0 | 100 | | 1.7 | 1.2 | 8.0 | .25 | 15.0 | | | EC113D3 | 0.8 | 0.51 | 400 | 500 | 2.0 | 100 | | 1.7 | 1.2 | 0.8 | .25 | 15.0 | | | EC113E3
EC113M3 | 0.8
0.8 | 0.51
0.51 | 500
600 | 500
500 | 2.0 | 100
100 | | 1.7 | 1.2 | 0.8 | .25
.25 | 15.0
15.0 | | | 2N5060 | 0.8 | 0.51 | 30 | 200 | 1.0 | 100 | 50 | 1.7 | 1.2 | 0.8 | .25 | 15.U
5.0 | | | 2N5061 | 0.8 | 0.51 | 60 | 200 | 1.0 | | 50 | 1.7 | 1.2 | 0.8 | .25 | 5.0 | | | 2N5062 | 0.8 | 0.51 | 100 | 200 | 1.0 | | 50 | 1.7 | 1.2 | 0.8 | .25 | 5.0 | | | 2N5063 | 0.8 | 0.51 | 150 | 200 | 1.0 | | 50 | 1.7 | 1.2 | 0.8 | .25 | 5.0 | | | 2N5064
2N6564 | 0.8 | 0.51
0.51 | 200
300 | 200
200 | 1.0 | | 50
100 | 1.7
1.7 | 1.2 | 0.8 | .25
.25 | 5.0
5.0 | | | 2N6565 | 0.8 | 0.51 | 400 | 200 | 1.0 | | 100 | 1.7 | 1.2 | 0.8 | .20
.25 | 5.0 | | | TCR22-2 | 1.5 | .95 | 50 | 200 | 1.0 | 50 | 100 | 1.5 | 1.0 | 0.8 | .25 | 5.0 | | | TCR22-3 | 1.5 | .95 | 100 | 200 | 1.0 | 50 | 100 | 1.5 | 1.0 | 0.8 | .25 | 5.0 | | 1.5 | TCR22-4 | 1.5 | .95 | 200 | 200 | 1.0 | 50 | 100 | 1.5 | 1.0 | 0.8 | .25 | 5.0 | | AMPS | TCR22-6 | 1.5 | .95 | 400 | 200 | 1.0 | 50 | 100 | 1.5 | 1.0 | 0.8 | .25 | 5.0 | | | TCR22-8 | 1.5 | .95 | 600 | 200 | 2.0 | 100 | 200 | 1.5 | 1.0 | 0.8 | .25 | 5.0 | See General Notes and Electrical Specifications Notes on page 5-4. | I _{GM} | V _{GRM} | P _{GM} | P _{G(AV)} | l _T | SM | dv/dt | di/dt | t _{gt} | tq | 1 ² t | | |-----------------|------------------|-----------------|--------------------|-------------------------|----------|----------------------|--|----------------------|-------------|----------------------------|--| | Peak Gate | Peak | Peak Gate | Average | | (One | Critical Rate- | Maximum | Gate Controlled | Circuit | RMS Surge | | | Current | Reverse | Power | Gate Power | | Surge | Of-Rise Of | Rate-Of- | Turn-On Time | Commutated | (Non-Repeti- | | | (16) | Gate | Dissipation | Dissipation | | ward | Forward | Change Of | Gate Pulse | Turn-Off | tive) On-State | | | | Voltage | (16) | | Current
(6) (7) (12) | | Off-State
Voltage | On-State Current
I _{GT} = 50mA | = 10mA
Min. Width | Time
(9) | Current For
A Period Of | | | | | | | (6) (7 |)(12) | Vollage | GT = 50πA
With 0.1μs | = 15µs | (9) | 8.3ms For | | | | | | | | | | Rise Time | With Rise Time | | Fusing | | | | | | | | | | | ≤ 0.1 μs | | _ | | | | | | | | | | | (8) | An | nps | | | | | | | | | | | | | | 1 | | | | . 2 | | | Amps | Volts | Watts | Watts | 60Hz | 50Hz | Volts/μSec | Amps/μSec | μSec | μSec | Amps ² /Sec | | | | MIN | | | | | MIN | | TYP | MAX | | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 30 | 50 | 3.5 | 50 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 30 | 50 | 3.5 | 50 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 30 | 50 | 3.5 | 50 | 1.6 | | | 1.0 | 5.0
5.0 | 1.0 | 0.1
0.1 | 20
20 | 16
16 | 30
20 | 50
50 | 3.5
3.5 | 50
50 | 1.6
1.6 | | | 1.0 | 5.0
5.0 | 1.0 | 0.1 | 20
20 | 16 | 20
15 | 50 | 3.5 | 50
50 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 20 | 50 | 2.0 | 60 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 20 | 50 | 2.0 | 60 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 20 | 50 | 2.0 | 60 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 20 | 50 | 2.0 | 60 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 15 | 50 | 2.0 | 60 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 10 | 50 | 2.0 | 60 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 25 | 50 | 3.0 | 60 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 25 | 50 | 3.0 | 60 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 25 | 50 | 3.0 | 60 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 25 | 50 | 3.0 | 60 | 1.6 | | | 1.0 | 5.0
5.0 | 1.0 | 0.1
0.1 | 20
20 | 16
16 | 20
10 | 50
50 | 3.0
3.0 | 60
60 | 1.6
1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 40 | 50 | 5.0 | 45 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 40 | 50 | 5.0 | 45 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 40 | 50 | 5.0 | 45 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 40 | 50 | 5.0 | 45 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 30 | 50 | 5.0 | 45 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 20 | 50 | 5.0 | 45 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 30 | 50 | 4.0 | 30 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 30 | 50 | 4.0 | 30 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16
16 | 30 | 50 | 4.0 | 30
30 | 1.6 | | | 1.0 | 5.0
5.0 | 1.0 | 0.1
0.1 | 20
20 | 16 | 30
20 | 50
50 | 4.0
4.0 | 30
30 | 1.6
1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 15 | 50 | 4.0 | 30 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 40 | 50 | 5.0 | 18 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 40 | 50 | 5.0 | 18 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 40 | 50 | 5.0 | 18 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 40 | 50 | 5.0 | 18 | 1.6 | | | 1.0 | 5,0 | 1.0 | 0.1 | 20 | 16 | 30 | 50 | 5.0 | 18 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 20 | 50 | 5.0 | 18 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 25 | 50 | 2.2 | 60
60 | 1.6 | | | 1.0 | 5.0
5.0 | 1.0 | 0.1
0.1 | 20
20 | 16
16 | 25
25 | 50
50 | 2.2 | 60
60 | 1.6
1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 25
25 | 50 | 2.2 | 60 | 1.6 | | | 1.0 | 5.0 | 1.0 | 0.1 | 20 | 16 | 25 | 50 | 2.2 | 60 | 1.6 | | | 1.0 | 6.0 | 1.0 | 0.1 | 20 | 16 | 25 | 50 | 2.2 | 60 | 1.6 | | | 1.0 | 6.0 | 1.0 | 0.1 | 20 | 16 | 25 | 50 | 2.2 | 60 | 1.6 | | | 1.0 | 6.0 | 1.0 | 0.1 | 20 | 16 | 75 | 50 | 3.5 | 50 | 1.6 | | | 1.0 | 6.0 | 1.0 | 0.1 | 20 | 16 | 75 | 50 | 3.5 | 50 | 1.6 | | | 1.0 | 6.0 | 1.0 | 0.1 | 20 | 16 | 60 | 50 | 3.5 | 50 | 1.6 | | | 1.0 | 6.0 | 1.0 | 0.1 | 20 | 16 | 40 | 50 | 3.5 | 50 | 1.6 | | | 1.0 | 6.0 | 1.0 | 0.1 | 20 | 16 | 30 | 50 | 3.5 | 50 | 1.6 | | See General Notes and Electrical Specifications Notes on page 5-4. | | Part
Number
Non-Isolated | ı | т | V _{DRM} & V _{RRM} | I _{GT} | I _{DR} | M & | V _{TM} | | V _{GT} | | I _H | I _{GM} | |------|--------------------------------|--|--------------------|---|--|---|------------------|--|--|------------------|------------------|--|------------------------------| | ТҮРЕ | K A G | Maximum On-State Current (1) TO-202AB Amps | | Repetitive Peak Off-State Forward & Reverse Voltage | DC Gate
Trigger
Current
(2) (11) (13) | Peak Off-State
Current at
V _{DRM} & V _{RRM}
(19) | | Peak
On-State
Voltage
T _C = 25°C
(3) (10) | DC Gate
Trigger Voltage
(4) (11) | | | DC Holding
Current
Initial On-State
Current = 20mA
(5) (15) (18) | Peak Gate
Current
(16) | | | TO-202AB | | | | | μ A mps | | | Volts | | | mAmps | | | | See "Package | | | | | T _C = | T _C = | | T _C = | T _C = | T _C = | | | | | Dimensions" section for | I _{T(RMS)} | I _{T(AV)} | Volts | μAmps | 25°C | 110°C | Volts | - 40°C | 25°C | 110°C | $T_C = 25$ °C | Amps | | | variations. | MAX | MAX | MIN | MAX | MAX | MAX | MAX | MAX | MAX | MIN | MAX | | | | T106F1 | 4.0 | 2.5 | 50 | 200 | 2.0 | 100 | 2.2 | 1.0 | 0.8 | 0.2 | 5.0 | 1.0 | | | T106A1 | 4.0 | 2.5 | 100 | 200 | 2.0 | 100 | 2.2 | 1.0 | 0.8 | 0.2 | 5.0 | 1.0 | | | T106B1 | 4.0 | 2.5 | 200 | 200 | 2.0 | 100 | 2.2 | 1.0 | 0.8 | 0.2 | 5.0 | 1.0 | | | T106C1 | 4.0 | 2.5 | 300 | 200 | 2.0 | 100 | 2.2 | 1.0 | 0.8 | 0.2 | 5.0 | 1.0 | | | T106D1 | 4.0 | 2.5 | 400 | 200 | 2.0 | 100 | 2.2 | 1.0 | 0.8 | 0.2 | 5.0 | 1.0 | | 4.0 | T106E1 | 4.0 | 2.5 | 500 | 200 | 2.0 | 100 | 2.2 | 1.0 | 8.0 | 0.2 | 5.0 | 1.0 | | Amps | T106M1 | 4.0 | 2.5 | 600 | 200 | 2.0 | 100 | 2.2 | 1.0 | 0.8 | 0.2 | 5.0 | 1.0 | | | T107F1 | 4.0 | 2.5 | 50 | 500 | 2.0 | 100 | 2.5 | 1.0 | 0.8 | 0.2 | 6.0 | 1.0 | | | T107A1 | 4.0 | 2.5 | 100 | 500 | 2.0 | 100 | 2.5 | 1.0 | 0.8 | 0.2 | 6.0 | 1.0 | | | T107B1 | 4.0 | 2.5 | 200 | 500 | 2.0 | 100 | 2.5 | 1.0 | 8.0 | 0.2 | 6.0 | 1.0 | | | T107C1 | 4.0 | 2.5 | 300 | 500 | 2.0 | 100 | 2.5 | 1.0 | 0.8 | 0.2 | 6.0 | 1.0 | | | T107D1 | 4.0 | 2.5 | 400 | 500 | 2.0 | 100 | 2.5 | 1.0 | 8.0 | 0.2 | 6.0 | 1.0 | | | T107E1 | 4.0 | 2,5 | 500 | 500 | 2.0 | 100 | 2.5 | 1.0 | 0.8 | 0.2 | 6.0 | 1.0 | | | T107M1 | 4.0 | 2.5 | 600 | 500 | 2.0 | 100 | 2.5 | 1.0 | 0.8 | 0.2 | 6.0 | 1.0 | #### **General Notes** - Teccor 2N5060 and 2N6564 Series devices conform to all JEDEC registered data. See specifications table on page 5-2. - The case temperature (TC) is measured as shown on dimensional outline drawings. See "Package Dimensions" section of this catalog. - All measurements (except I_{GT}) are made with an external resistor R_{GK} = 1kΩ unless otherwise noted. - All measurements are made at 60Hz with a resistive load at an ambient temperature of +25°C unless otherwise specified. - Operating temperature (T_J) is -65°C to + 110°C for "EC" Series devices; -65°C to +125°C for "2N" Series devices; -40°C to +125°C for "TCR" Series; and -40°C to +110°C for all others. - Storage temperature range (T_S) is -65°C to + 150°C for TO-92 devices; -40°C to +150°C for TO-202 devices; and -40°C to +125°C for all others. - Lead solder temperature is a maximum of +230°C for 10 seconds maximum ≥ 1/16" (1.59mm) from case. #### **Electrical Specification Notes** - See Figures 5.1 through 5.9 for current ratings at specified operating case temperatures. - (2) See Figure 5.10 for I_{GT} vs T_C . - (3) See Figure 5.11 for instantaneous on-state current (i_T) vs on-state voltage (v_T) - (typical). - (4) See Figure 5.12 for V_{GT} vs T_{C} . - (5) See Figure 5.13 for I_H vs T_C. - (6) For more than one full cycle, see Figure 5.14. - (7) 0.8 4.0A devices also have a pulse peak forward current on-state rating (repetitive) of 75A. This rating applies for operation at 60Hz, 75°C maximum tab (or anode) lead temperature, switching from 80V peak, sinusoidal current pulse width of 10μs minimum, 15μs maximum. See Figures 5.20 and 5.21. - (8) See Figure 5.15 for t_{at} vs I_{GT}. - (9) Test conditions as follows: T_C ≤ 80°C, rectangular current waveform; rate-of-rise of current ≤ 10A/μs. Rate-of-reversal of current ≤ 5A/μs. I_{TM} = 1A (50μs pulse) Repetition Rate = 60pps. V_{RRM} = Rated. V_R = 15V minimum, V_{DRM} = Rated. Rate-of-rise reapplied forward blocking voltage = 5V/μs. Gate Bias = 0V, 100Ω (during turn-off time interval). - (10) Test condition is maximum rated RMS current except TO-92 devices are 1.2A_{PK}; T106/T107 devices are 4A_{PK}. - (11) V_D = 6VDC, R_L = 100Ω. See Figure 5.19 for simple test circuit for measuring gate trigger voltage and gate trigger current. - (12) See Figures 5.1 through 5.9 for maximum allowable case temperature at maximum rated current. - (13) I_{GT} = 500 μA maximum for T_{C} = -40 $^{\circ}C$ for T106 devices. - (14) I_H = 10mA maximum for T_C = -65°C for 2N5060 Series and 2N6564 Series devices. - (15) $I_H = 6mA$ maximum for $T_C = -40$ °C for T106 devices - (16) Pulse Width ≤ 10µs. - (17) $I_{GT} = 350\mu A$ maximum at $T_C = -65$ °C for 2N5060 Series and 2N6564 Series devices. - (18) Latching current can be higher than 20mA for higher I_{GT} types. Also latching current can be much higher at -40°C. See Figure 5 18 - (19) $T_C = T_J$ for test conditions in off-state | V _{GRM} | P _{GM} | P _{G(AV)} | I _{T!} | SM | dv/dt | di/dt | t _{gt} | tq | l ² t | |------------------------------------|---|--------------------------------------|-------------------------------|--|---|---|--|--|---| | Peak
Reverse
Gate
Voltage | Peak Gate
Power
Dissipation
(16) | Average
Gate Power
Dissipation | Cycle
For
Cur
(6) (7 | c One
Surge
ward
rrent
() (12) | Critical Rate-
Of-Rise Of
Forward
Off-State
Voltage
Volts/µSec | Maximum Rate-Of- Change Of On-State Current I _{GT} = 50mA with 0.1μs Rise Time | Gate Controlled Turn-On Time Gate Pulse = 10mA Min. Width = 15µs with Rise Time ≤ 0.1 µs (8) | Circuit
Commutated
Turn-Off
Time
(9) | RMS Surge
(Non-Repetitive)
On-State
Current For
A Period Of
8.3 msec for
Fusing | | | | | | | T _C = 110°C | | | | | | Volts | Watts | Watts | 60Hz | 50Hz | | Amps/μSec | μSec | μSec | Amps ² Sec | | MIN | | | | | TYP | | TYP | MAX | | | 6.0 | 1.0 | 0.1 | 20 | 16 | 8 | 50 | 4.0 | 50 | 1.6 | | 6.0 | 1.0 | 0.1 | 20 | 16 | 8 | 50 | 4.0 | 50 | 1.6 | | 6.0 | 1.0 | 0,1 | 20 | 16 | 8 | 50 | 4.0 | 50 | 1.6 | | 6.0 | 1.0 | 0.1 | 20 | 16 | 8 | 50 | 4.0 | 50 | 1.6 | | 6.0 | 1.0 | 0.1 | 20 | 16 | 8 | 50 | 4.0 | 50 | 1.6 | | 6.0 | 1.0 | 0.1 | 20 | 16 | 8 | 50 | 4.0 | 50 | 1.6 | | 6.0 | 1.0 | 0.1 | 20 | 16 | 8 | 50 | 4.0 | 50 | 1.6 | | 6.0 | 1.0 | 0.1 | 20 | 16 | 8 | 50 | 5.0 | 45 | 1.6 | | 6.0 | 1.0 | 0.1 | 20 | 16 | 8 | 50 | 5.0 | 45 | 1.6 | | 6.0 | 1.0 | 0.1 | 20 | 16 | 8 | 50 | 5,0 | 45 | 1.5 | | 6.0 | 1.0 | 0.1 | 20 | 16 | 8 | 50 | 5.0 | 45 | 1.6 | | 6.0 | 1.0 | 0.1 | 20 | 16 | 8 | 50 | 5.0 | 45 | 1.6 | | 6.0 | 1.0 | 0.1 | 20 | 16 | 8 | 50 | 5.0 | 45 | 1.6 | | 6.0 | 1.0 | 0.1 | 20 | 16 | 8 | 50 | 5.0 | 45 | 1.6 | | | Part Nu | mber | | | V _{DRM} & | | IDR | м& | | | | | | |-------|-------------------|--------------|---------------------|----------------------|---|---|--|------------------------|--|----------------------------|---------------------------------|---|-------| | | Isolated | Non-Isolated | ŀ | T | V _{RRM} | I _{GT} | IR | RM | V _{TM} | | V_{GT} | | IH | | ТҮРЕ | K G | | | mum
State
rent | Repetitive Peak
Off-State
Forward &
Reverse
Voltage | DC Gate
Trigger
Current
(2) (11) | Peak
Off-State
Current at
V _{DRM} & V _{RRM}
(19) | | State On-State ent at Voltage & V _{RRM} T _C = 25°C | | DC Gate
ger Volt
(4) (11) | DC Holding
Current
Initial
On-State
Current =
20mA
(5) (17) | | | | TO-220AB | TO-202AB | Am | ıps | | | mA | mps | | | Volts | | | | | See "Package Dime | | I _{T(RMS)} | I _{T(AV)} | Volts | μ A mps | T _C =
25°C | T _C = 110°C | | T _C =
- 40°C | | T _C =
110°C | mAmps | | | for varia | | MAX | MAX | MIN | MAX | MAX | MAX | MAX | MAX | MAX | MIN | MAX | | | S0506LS2 | S0506FS21 | 6.0 | 3.8 | 50 | 200 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 6.0 | | | S0506LS3 | S0506FS31 | 6.0 | 3.8 | 50 | 500 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 8.0 | | 6.0 | S1006LS2 | S1006FS21 | 6.0 | 3.8 | 100 | 200 | .005 | 0.25 | 1,6 | 1.0 | 0.8 | .25 | 6.0 | | 6.0 | S1006LS3 | S1006FS31 | 6.0 | 3.8 | 100 | 500 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 8.0 | | Amps | S2006LS2 | S2006FS21 | 6.0 | 3.8 | 200 | 200 | .005 | 0.25 | 1.6 | 1.0 | 8.0 | .25 | 6.0 | | | S2006LS3 | S2006FS31 | 6.0 | 3.8 | 200 | 500 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 8.0 | | | S4006LS2 | S4006FS21 | 6.0 | 3.8 | 400 | 200 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 6.0 | | | S4006LS3 | S4006FS31 | 6.0 | 3.8 | 400 | 500 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 8.0 | | | S6006LS2 | S6006FS21 | 6.0 | 3.8 | 600 | 200 | .005 | 0.25 | 1.6 | 1.0 | 8.0 | .25 | 6.0 | | | S6006LS3 | S6006FS31 | 6.0 | 3.8 | 600 | 500 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 8.0 | | | S0508LS2 | S0508FS21 | 8.0 | 5.1 | 50 | 200 | .005 | 0.25 | 1.6 | 1.0 | 8.0 | .25 | 6.0 | | | S0508LS3 | S0508FS31 | 8.0 | 5.1 | 50 | 500 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 8.0 | | | S1008LS2 | S1008FS21 | 8.0 | 5.1 | 100 | 200 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 6.0 | | 8.0 | S1008LS3 | S1008FS31 | 8.0 | 5.1 | 100 | 500 | .005 | 0.25 | 1.6 | 1.0 | 8.0 | .25 | 8.0 | | Amps | S2008LS2 | S2008FS21 | 8.0 | 5.1 | 200 | 200 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 6.0 | | | S2008LS3 | S2008FS31 | 8.0 | 5.1 | 200 | 500 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 8.0 | | | S4008LS2 | S4008FS21 | 8.0 | 5.1 | 400 | 200 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 6.0 | | | S4008LS3 | S4008FS31 | 8.0 | 5.1 | 400 | 500 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 8.0 | | | S6008LS2 | S6008FS21 | 8.0 | 5.1 | 600 | 200 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 6.0 | | | S6008LS3 | S6008FS31 | 8.0 | 5.1 | 600 | 500 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 8.0 | | | S0510LS2 | S0510FS21 | 10.0 | 6.4 | 50 | 200 | .005 | 0.25 | 1.6 | 1.0 | 8.0 | .25 | 6.0 | | | S0510LS3 | S0510FS31 | 10.0 | 6.4 | 50 | 500 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 8.0 | | 10.0 | S1010LS2 | S1010FS21 | 10.0 | 6.4 | 100 | 200 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 6.0 | | Amps | S1010LS3 | S1010FS31 | 10.0 | 6.4 | 100 | 500 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 8.0 | | winha | S2010LS2 | S2010FS21 | 10.0 | 6.4 | 200 | 200 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 6.0 | | | S2010LS3 | S2010FS31 | 10.0 | 6.4 | 200 | 500 | .005 | 0.25 | 1.6 | 1.0 | 8.0 | .25 | 8.0 | | | S4010LS2 | S4010FS21 | 10.0 | 6.4 | 400 | 200 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 6.0 | | | S4010LS3 | S4010FS31 | 10.0 | 6.4 | 400 | 500 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .26 | 8.0 | | | S6010LS2 | S6010FS21 | 10.0 | 6.4 | 600 | 200 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 6.0 | | | S6010LS3 | S6010FS31 | 10.0 | 6.4 | 600 | 500 | .005 | 0.25 | 1.6 | 1.0 | 0.8 | .25 | 8.0 | #### **General Notes** - Teccor 2N5060 and 2N6564 Series devices conform to all JEDEC registered data. See specifications table on page 5-2. - The case temperature (TC) is measured as shown on dimensional outline drawings. See "Package Dimensions" section of this catalog. - All measurements (except I_{GT}) are made with an external resistor R_{GK} = 1kΩ unless otherwise noted. - All measurements are made at 60Hz with a resistive load at an ambient temperature of +25°C unless otherwise specified. - Operating temperature (T_J) is -65°C to + 110°C for "EC" Series devices; -65°C to +125°C for "2N" Series devices; -40°C to +125°C for "TCR" Series; and -40°C to +110°C for all others. - Storage temperature range (T_S) is -65°C to + 150°C for TO-92 devices; -40°C to +150°C for TO-202 devices; and -40°C to +125°C for all others. - Lead solder temperature is a maximum of +230°C for 10 seconds maximum ≥ 1/16" (1.59mm) from case. | | | _ | _ | | | | | | | | |------------------------------|------------------------------------|---|--------------------------------------|--|-----------------------|---|---|--|--|---| | I _{GM} | V _{GRM} | P _{GM} | P _{G(AV)} | ITS | SM | dv/dt | di/dt | t _{gt} | tq | l ² t | | Peak Gate
Current
(16) | Peak
Reverse
Gate
Voltage | Peak Gate
Power
Dissipation
(16) | Average
Gate Power
Dissipation | Peak
Cycle
Forw
Curr
(6) (| Surge
/ard
rent | Critical Rate-
Of-Rise Of
Forward
Off-State
Voltage | Maximum Rate-Of-Change Of On-State Current I _{GT} = 50mA With 0.1 µs Rise Time | Gate Controlled
Turn-On Time
Gate Pulse = 10mA
Min. Width = 15μs
With Rise Time
≤ 0.1 μs
(8) | Circuit
Commutated
Turn-Off
Time
(9) | RMS Surge
(Non-Repetitive)
On-State
Current For
A Period Of
8.3 mSec For
Fusing | | | | | | | | Volts/μSec | | | | | | Amps | Volts | W atts | Watts | Am | | T _C = 110°C | Amps/ μSec | μSec | μSec | Amps ² Sec | | | MIN | | | 60 Hz | 50 Hz | TYP | | TYP | MAX | | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 20 | 100 | 4.0 | 50 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 20 | 100 | 5.0 | 45 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 10 | 100 | 4.0 | 50 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 10 | 100 | 5.0 | 45 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 10 | 100 | 4.0 | 50 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 10 | 100 | 5.0 | 45 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 5 | 100 | 4.0 | 50 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 5 | 100 | 5.0 | 45 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 5 | 100 | 4.0 | 50 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 5 | 100 | 5.0 | 45 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 20 | 100 | 4.0 | 50 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 20 | 100 | 5.0 | 45 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 10 | 100 | 4.0 | 50 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 10 | 100 | 5.0 | 45 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 10 | 100 | 4.0 | 50 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 10 | 100 | 5.0 | 45 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 5 | 100 | 4.0 | 50 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 5 | 100 | 5.0 | 45 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 5 | 100 | 4.0 | 50 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 5 | 100 | 5.0 | 45 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 20 | 100 | 4.0 | 50 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 20 | 100 | 5.0 | 45 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 10 | 100 | 4.0 | 50 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 10 | 100 | 5.0 | 45 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 10 | 100 | 4.0 | 50 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 10 | 100 | 5.0 | 45 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 5 | 100 | 4.0 | 50 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 5 | 100 | 5.0 | 45 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 5 | 100 | 4.0 | 50 | 41 | | 1.0 | 6.0 | 1.0 | 0.1 | 100 | 83 | 5 | 100 | 5.0 | 45 | 41 | - See Figures 5.1 through 5.9 for current ratings at specified operating case temperatures. - (2) See Figure 5.10 for I_{GT} vs T_C. - (3) See Figure 5.11 for instantaneous on-state current (i_T) vs on-state voltage (v_T) - (typical). - (4) See Figure 5.12 for V_{GT} vs T_{C} . - (5) See Figure 5.13 for I_H vs T_C . - (6) For more than one full cycle, see Figure 5.14. - (7) 0.8 4.0A devices also have a pulse peak forward current on-state rating (repetitive) of 75A. This rating applies for operation at 60Hz, 75°C maximum tab (or anode) lead temperature, switching from 80V peak, sinusoidal current pulse width of 10μs minimum, 15μs maximum. See Figures 5.20 and 5.21. - (8) See Figure 5.15 for t_{gt} vs l_{GT} - (9) Test conditions as follows: - T_C ≤ 80° C, rectangular current waveform; rate-of-rise of current ≤ 10A/μs. Rate-of-reversal of current ≤ 5A/μs. I_{TM} = 1A (50μs pulse) Repetition Rate = 60pps. V_{RRM} = Rated. - $V_R = 15V$ minimum, $V_{DRM} = Rated$. Rate-of-rise reapplied forward - blocking voltage= $5V/\mu s.$ Gate Bias = 0V, 100Ω (during turn-off time interval). - (10) Test condition is maximum rated RMS current except TO-92 devices are 1.2A_{PK}, T106/T107 devices are 4A_{PK}. - (11) V_D = 6VDC, R_L = 100Ω. See Figure 5.19 for simple test circuit for measuring gate trigger voltage and gate trigger current. - (12) See Figures 5.1 through 5.9 for maximum allowable case temperature at maximum rated current. - (13) $I_{GT} = 500\mu A$ maximum for $T_C = -40 \,^{\circ}\text{C}$ for T106 devices. - (14) I_H = 10mA maximum for T_C = -65°C for 2N5060 Series and 2N6564 Series devices. - (15) $I_H = 6mA$ maximum for $T_C = -40$ °C for T106 devices. - (16) Pulse Width $\leq 10 \mu s$. - (17) $I_{GT} = 350 \mu A$ maximum at $T_C = -65 \,^{\circ} C$ for 2N5060 Series and 2N6564 Series devices. - (18) Latching current can be higher than 20mA for higher I_{GT} types. Also latching current can be much higher at -40 °C. See Figure 5.18. - (19) $T_C = T_J$ for test conditions in off-state. #### **Electrical Isolation** Teccor's isolated sensitive SCRs will withstand a minimum high potential test of 2500 VAC RMS from leads to mounting tab over the device's operating temperature range. See table below for other standard and optional isolation ratings. ^{*}For 4000V Isolation use "V" Suffix in part number Figure 5.1 Maximum Allowable Case Temperature vs RMS On-State Current (JEDEC "2N" Series and "EC" Series) Figure 5.2 Maximum Allowable Case Temperature vs RMS On-State Current (T106 and T107) Figure 5.3 Maximum Allowable Case Temperature vs Average On-State Current (JEDEC "2N" Series and "EC" Series) ^{**}UL Recognized File #E71639 Figure 5.4 Maximum Allowable Case Temperature vs Average On-State Current (T106 and T107) Figure 5.5 Maximum Allowable Ambient Temperature vs On-State Current (1.5 Amp, JEDEC "2N" Series and "EC" Series) Figure 5.6 Maximum Allowable Ambient Temperature vs RMS On-State Current (T106 and T107) Figure 5.7 Maximum Allowable Ambient Temperature vs Average On-State Current Figure 5.8 Maximum Allowable Case Temperature vs RMS On-State Current Figure 5.9 Maximum Allowable Case Temperature vs Average On-State Current Figure 5.10 Normalized DC Gate-Trigger Current vs Case Temperature Figure 5.12 Normalized DC Gate-Trigger Voltage vs Case Temperature Figure 5.11 Instantaneous On-State Current vs On-State Voltage (Typical) Figure 5.13 Normalized DC Holding Current vs Case Temperature Figure 5.14 Peak Surge On-State Current vs Surge Current Duration Figure 5.15 Typical Turn-On Time vs Gate Trigger Current Figure 5.16 Power Dissipation (Typical) vs RMS On-State Current Figure 5.17 Power Dissipation (Typical) vs RMS On-State Current Figure 5.18 Normalized DC Latching Current vs Case Temperature Figure 5.19 Simple Test Circuit For Gate Trigger Voltage and Current Measurement Note: V1 — 0-10 volt DC meter VGT — 0-1 volt DC meter I_G — 0-1 mA DC millimeter R1 — 1K potentiometer To measure gate trigger voltage and current, raise gate voltage $(V_{\rm GT})$ until meter reading V1 drops from 6 volts to 1 volt. Gate trigger voltage is the reading on $V_{\rm GT}$ just prior to V1 dropping. Gate trigger current $I_{\rm GT}$ can be computed from the relationship: $$I_{GT} = I_{G} \frac{V_{GT}}{1000} Amps$$ 5-11 where I_G is reading (in amps) on meter just prior to V1 dropping. **Note:** I_{GT} may turn out to be a negative quantity (trigger current flows out from gate lead). Figure 5.20 Peak Repetitive Capacitor Discharge Current Figure 5.21 Peak Repetitive Sinusoidal Curve