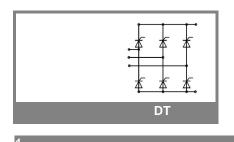
SK 40 DT

Controllable Bridge Rectifier

SK 40 DT

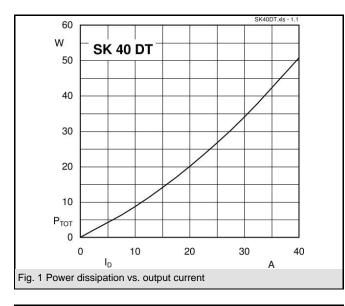
Preliminary Data

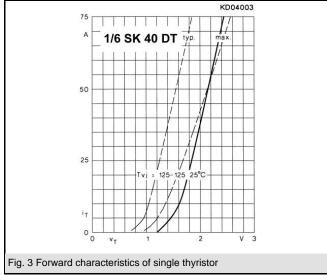

Features

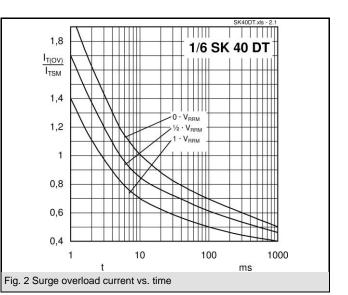
- Compact design
- One screw mounting
- Heat transfer and insolation through direct copper bonded aluminium oxide ceramic (DBC)
- Glass passived thyristor chips
- Up to 1600V reverse voltage
- UL recognized, file no. E 63 532

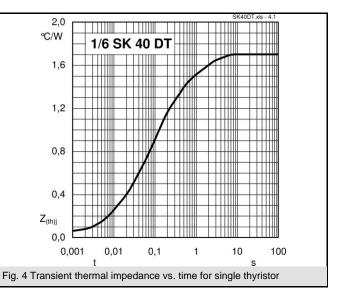
Typical Applications*

- Soft starters
- Light control
- Temperature control
- Motor control

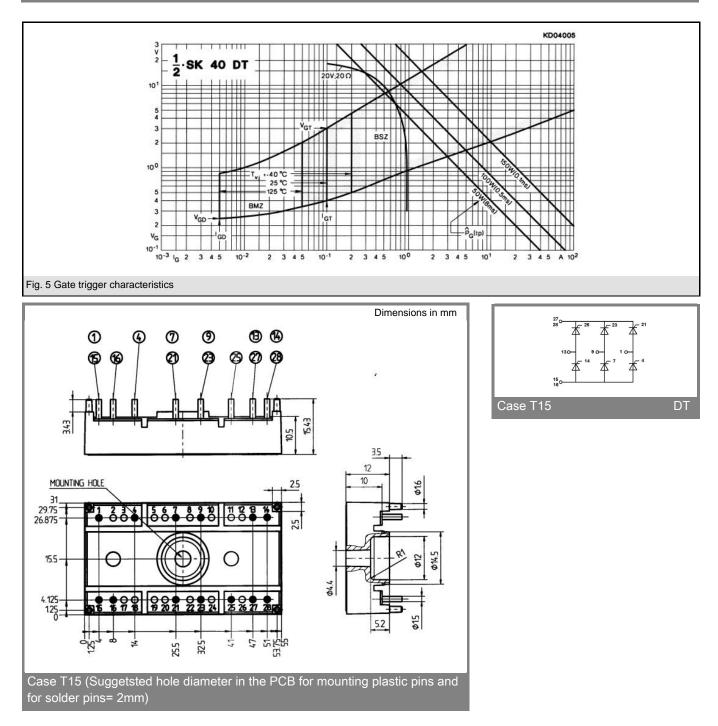

V _{RSM}	V _{RRM} , V _{DRM}		I _D = 42 A (full conduction)	
V	V		(T _s = 80 °C)	
900 800			SK 40 DT 08	
1300 1200			SK 40 DT 12	
1700 1600			SK 40 DT 16	
			-	
Symbol	Conditions		Values	Units
I _D	T _s = 80 °C		42	A
I _{FSM}	T _{vj} = 25 °C; 10 ms		320	А
	T _{vj} = 125 °C; 10 ms		280	А
i²t	T _{vj} = 25 °C; 8,3 10 ms		510	A²s
	T _{vj} = 125 °C; 8,310 ms		390	A²s
V _T	T _{vi} = 25 °C; 75A		max. 2,45	V
V _{T(TO)}	T _{vj} = 125 °C;		max. 1,1	V
r _T	T _{vj} = 125 °C		max. 20	mΩ
I _{DD} ; I _{RD}	T _{vj} = 125 °C; V _{DD} = V _{DRM}	; V _{RD} = V _{RRM}	max. 8	mA
t _{gd}	$T_{vj} = °C; I_G = A; di_G/dt = A$	/µs		μs
t _{gr}	$V_{D} = \cdot V_{DRM}$			μs
(dv/dt) _{cr}	T _{vi} = 125 °C		max. 1000	V/µs
(di/dt) _{cr}	T _{vi} = 125 °C; f = 5060 H	z	max. 100	A/µs
t _q	T _{vj} = 125 °C; typ.		80	μs
I _H	T _{vj} = 25 °C; typ. / max.		80 / 150	mA
I _L	T_{vj} = 25 °C; R_G = 33 Ω		150 / 300	mA
V _{GT}	T _{vi} = 25 °C; d.c.		min. 2	V
I _{GT}	T _{vi} = 25 °C; d.c.		min. 100	mA
V _{GD}	T _{vj} = 125 °C; d.c.		max. 0,25	V
I _{GD}	T _{vj} = 125 °C; d.c.		max. 3	mA
Rth(j-s)	Per thyristor		1,7	K/W
				K/W
T _{solder}	Terminals, 10s		260	°C
T _{vi}			-40+125	°C
T _{stg}			-40+125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1	min.	3000 (2500)	V
M _s	Mounting torque to heatsi		2,5	Nm
m	weight		30	g
Case	SEMITOP [®] 3		T 15	




06-10-2005 SCT


© by SEMIKRON

SK 40 DT



SK 40 DT

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.