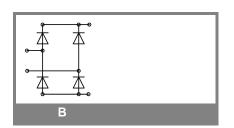
SK100B

SEMITOP® 2

Bridge Rectifier

SK100B

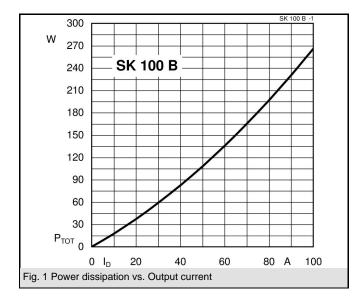
Target Data

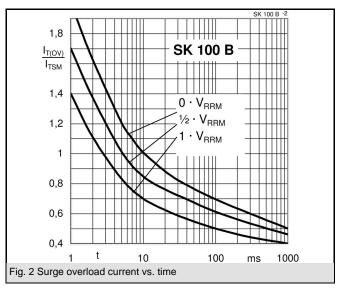

Features

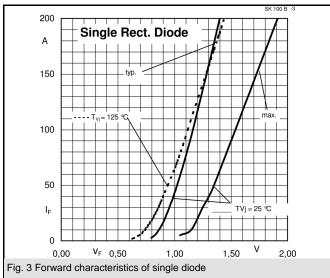
- Compact design
- · One screw mounting
- Heat transfer and insulation through direct copper bonded aluminium oxide ceramic (DCB)
- Up 1600V reverse voltage
- High surge current
- Glass passived diode chips
- UL recognized, file no. E 63 532

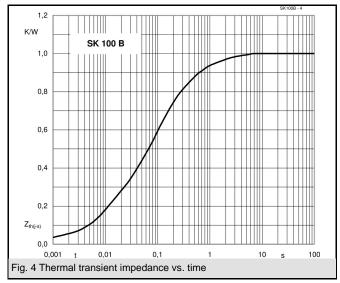
Typical Applications*

- Input rectifier for power suppliesRectifier

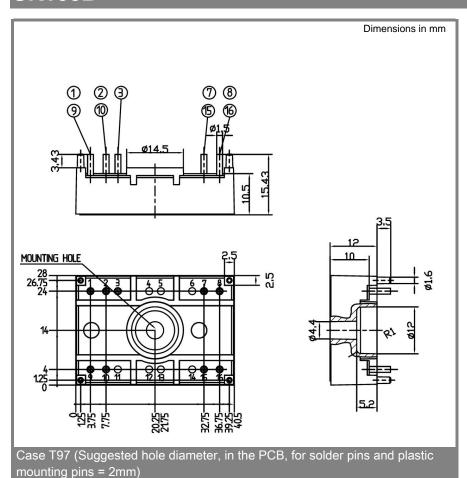

1)
$$V_F$$
, $V_{(TO)}$, r_T = chip level value

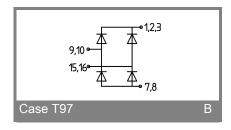



V _{RSM}	V_{RRM}, V_{DRM}	I _D = 100 A (full conduction)
V	V	(T _s = 80 °C)
900	800	SK100B08
1300	1200	SK100B12
1700	1600	SK100B16


Symbol	Conditions	Values	Units
I _D	T _s = 80 °C	100	Α
I _{FSM}	T _{vi} = 25 °C; 10 ms	1000	Α
	T _{vi} = 150 °C; 10 ms	890	Α
i²t	T _{vj} = 25 °C; 8,310 ms	5000	A²s
	T _{vj} = 125 °C; 8,310 ms	3960	A²s
V _F	T _{vi} = 25 °C; I _F = 40 A	max. 1,21	V
V _(TO)	T _{vi} = 125 °C	max. 0,83	V
r _T	T _{vi} = 125 °C	max. 3,9	mΩ
I_{RD}	$T_{vj}^{'}$ = 150 °C; V_{DD} = V_{DRM} ; V_{RD} = V_{RRM}	max. 1,1	mA
			mA
R _{th(j-s)}	per diode	1	K/W
	per module	0,25	K/W
T _{solder}	terminals, 10s	260	°C
T _{vi}		-40+150	°C
T _{stg}		-40+125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3000 (2500)	V
M _s	mounting torque to heatsink	2	Nm
M_t			
m	approx. weight	19	g
Case	SEMITOP® 2	Т 6	

SK100B





SK100B

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.