

3-Phase Bridge Rectifier

+ IGBT braking chopper

SKD146/..L105

Data

Features

- Compact design
- Two screws mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- High surge currents
- Up to 1600 V reverse voltage
- IGBT Trench4 inside; max $\mathrm{T}_{\mathrm{j}}=175^{\circ} \mathrm{C}$
- CAL4F diode inside, max $\mathrm{Tj}=175^{\circ} \mathrm{C}$
- $I_{C M} / I_{F M}=3 x I_{c, n o m} / I_{F, n o m}$
- Rectifier diode, max $\mathrm{Tj}=150^{\circ} \mathrm{C}$

Typical Applications*

- DC drives
- Controlled filed rectifiers for DC motors
- Controlled battery charger

$\mathrm{V}_{\text {RSM }}$	$\mathrm{V}_{\text {RRM }}, \mathrm{V}_{\text {DRM }}$	$\mathrm{I}_{\mathrm{D}}=120 \mathrm{~A}$ (maximum value for continuous operation)
V	V	$\left(\mathrm{T}_{\mathrm{s}}=70^{\circ} \mathrm{C}\right)$
1300	1200	SKD146/12-L105
1700	1600	SKD146/16-L105

Absolute Maximum Ratings		$\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$, unless otherwise specified	
Symbol	\|Conditions	Values	Units
Bridge - Rectifier			
I_{D}	$\left\lvert\, \begin{aligned} & \mathrm{T}_{\mathrm{s}}=85^{\circ} \mathrm{C} \text {; inductive load } \\ & \mathrm{t}^{\text {a }} \text { = } 10 \mathrm{~ms} ; \sin 180^{\circ} \cdot \mathrm{T} .\end{aligned}\right.$	140 1250	A
$\begin{aligned} & { }^{1} \mathrm{FSM}^{\prime \prime} \text { TSM } \\ & \mathrm{i}^{2} \mathrm{t} \end{aligned}$	$\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms} ; \sin 180^{\circ} ; \mathrm{T}_{\mathrm{jmax}}$	7800	$\mathrm{A}^{2} \mathrm{~s}$
IGBT - Chopper			
$V_{\text {CES }} / V_{\text {GES }}$		1200 / 20	\checkmark
${ }^{\text {I }}$ c	$\mathrm{T}_{\mathrm{s}}=25(70)^{\circ} \mathrm{C}$	110 (80)	A
${ }^{\text {cm }}$	$\mathrm{t}_{\mathrm{p}}=1 \mathrm{~ms} ; \mathrm{T}_{\mathrm{s}}={ }^{\circ} \mathrm{C}$	315	A
Freewheeling - CAL Diode			
$\mathrm{V}_{\text {RRM }}$		1200	V
$\mathrm{I}_{\text {F }}$	$\mathrm{T}_{\mathrm{s}}=25(70)^{\circ} \mathrm{C}$	90 (60)	A
I_{FM}	$\mathrm{t}_{\mathrm{p}}=1 \mathrm{~ms} ; \mathrm{T}_{\mathrm{s}}={ }^{\circ} \mathrm{C}$	300	A
T_{vj}	Diode \& IGBT (Thyristor)	-40 ... 175 (0 ... + 125)	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		-40 ... +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {solder }}$	terminals, 10 s	260	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {isol }}$	a.c. (50) Hz, RMS 1 min. / 1 s	$3000 / 3600$	V

Fig. 1 Power dissipation per module vs. output current

Fig. 3 Forward characteristic of single rectifier diode

Fig. 5 Typ. gate charge characteristic

Fig. 4 Temperature sensor characteristic

Fig. 6 Output IGBT characteristic $\mathrm{Ic}=\mathrm{f}(\mathrm{Vce}), \mathrm{Tj}=25^{\circ} \mathrm{C}$

Fig. 7 Output IGBT characteristic $\mathrm{Ic}=\mathrm{f}(\mathrm{Vce}), \mathrm{Tj}=125^{\circ} \mathrm{C}$

Fig. 9 Turn-on/-off energy $=f(R g)$

Fig. 8 Turn-on/-off energy $=f($ Ic)

Fig. 10 Diode forward characteristic

Case G 60

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.

