SKD 210

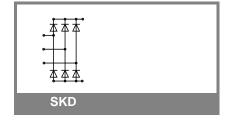
SEMIPONT® 4

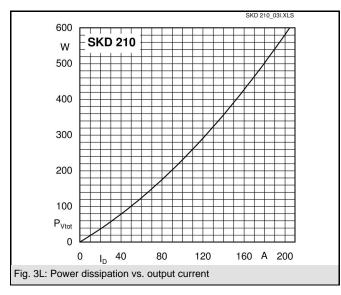
Power Bridge Rectifiers

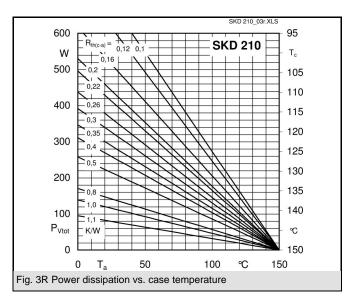
SKD 210

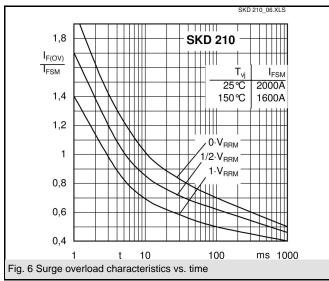
Preliminary Data

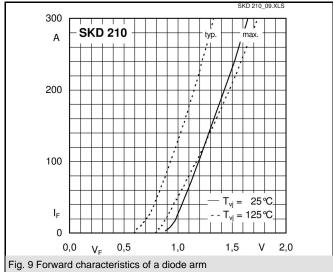
Features

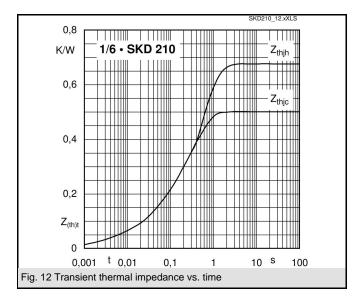

- Robust plastic case with screw terminals
- · Large, isolated base plate
- Blocking voltage up to 1800 V
- High surge currents
- Three phase brige rectifier
- · Easy chassis mounting
- UL recognition applied for file no. E 63 532

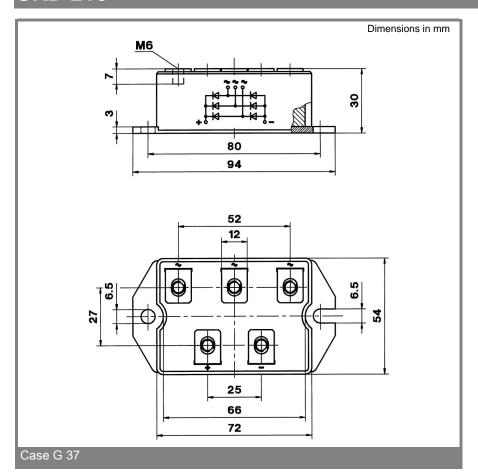

Typical Applications*


- Three phase rectifiers for power supplies
- Input rectifiers for variable frequency drives
- Rectifiers for DC motor field supplies
- · Battery charger rectifiers
- 1) Max. output current limited by the terminals: 220A rms


V_{RSM}	V_{RRM}, V_{DRM}	I _D = 210 A (full conduction)	
V	V	(T _c = 99 °C)	
900	800	SKD 210/08	
1300	1200	SKD 210/12	
1700	1600	SKD 210/16	
1900	1800	SKD 210/18	


Symbol	Conditions	Values	Units
I _D	T _c = 100 °C	207	А
I_D	T _C = 95 °C	220 ¹⁾	Α
I _{FSM}	T _{vi} = 25 °C; 10 ms	2000	A
	T _{vi} = 150 °C; 10 ms	1600	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	20000	A²s
	T _{vj} = 150 °C; 8,3 10 ms	12800	A²s
V _F	T _{vi} = 25 °C; I _F = 300 A	max. 1,65	V
V _(TO)	T _{vi} = 150 °C	max. 0,85	V
r _T	T _{vi} = 150 °C	max. 3	mΩ
I_{RD}	T_{vj}^{\prime} = 25 °C; V_{DD} = V_{DRM} ; V_{RD} = V_{RRM}	max. 0,5	mA
	T_{vj}^{9} = 150 °C, $V_{RD} = V_{RRM}$	6	mA
R	per diode	0,5	K/W
R _{th(j-c)}	total	0,083	K/W
R _{th(c-s)}	total	0,03	K/W
$T_{v_{j}}$		- 40 + 150	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 (3000)	V
M _s	to heatsink	5 ± 15 %	Nm
Mt	to terminals	5 ± 15 %	Nm
m		270	g
Case		G 37	





^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.