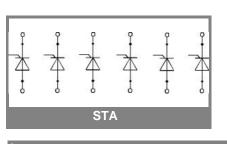
SK 45 STA

Six Separated Thyristors Module

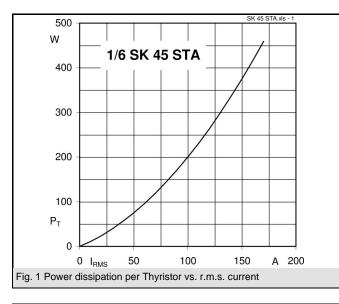
SK 45 STA

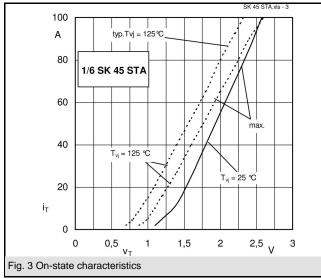
Preliminary Data

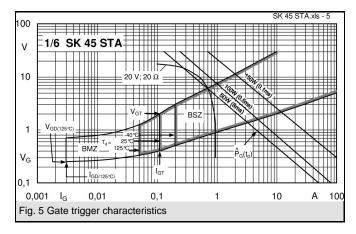

Features

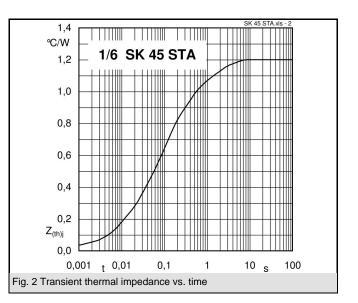
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Glass passivated thyristor chips
- Up to 1600 V reverse voltage

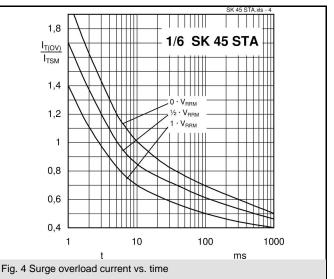
Typical Applications*

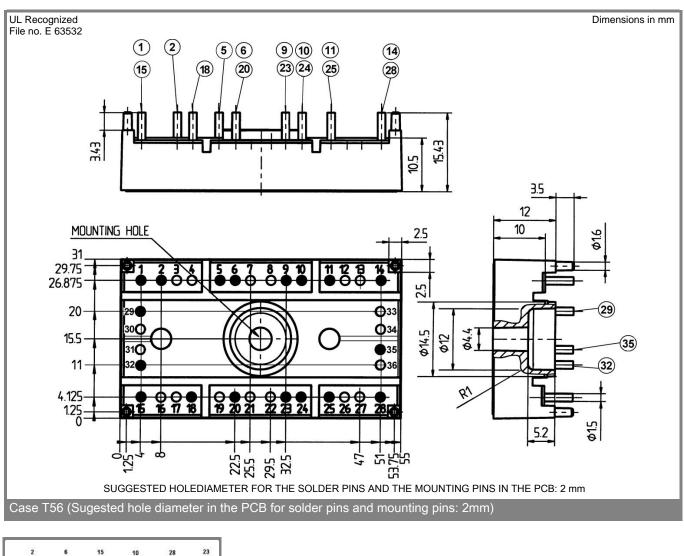

- Soft starters
- Light control (studios, theatres...)
- Temperature control

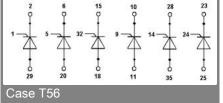

		ī				
V _{RSM}		V _{RRM} , V _{DRM}	I _{TRMS} = 41 A			
V		V	(T _s = 75 °C)			
900	900 800			SK 45 STA 08		
1300	1300 1200			SK 45 STA 12		
1700 1600				SK 45 STA 16		
Characteristics $T_h = 25 \text{ °C}$, unless otherwise specif						
Symbol	Cor	nditions			Values	Units
I _{rms} (W1C)	sin.	180°; T _S = 100°C			33	Α
I _{rms} (W1C)	sin.	sin. 180°; T _S = 85°C			47	A
						А
I _{TSM} /I _{FSM}	T _{vi} =	25 (125) °C; 10 ms			450 (380)	A
l²t	T _{vi} = 25 (125) °C; 8,3 10 ms ms				1000 (720)	A²s
T _{stg}	.,				- 40 + 125	°C
T _{solder}	term	inals, 10 s			260	°C
Thyristor						
$(dv/dt)_{cr}$ $T_{vi} = 125 °C$				1	1000	V/µs
(di/dt) _{cr}		T _{vi} = 125 °C; f = 50 60 Hz			50	Α/μs
t _q	T_{vj}^{-3} = 125 °C; typ.				80	μs
I _Н	T _{vj} = 25 °C; typ. / max.				80 / 150	mA
I_L T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.					150 / 300	mA
V _T	T _{vj} = 25 °C; (I _T = 75 A); max.				1,9	V
V _{T(TO)}	T _{vj} =	125 °C			max. 1	V
r _T	T _{vj} =	125 °C	., .,		max. 10	mΩ
I _{DD} ; I _{RD}	I _{vj} =	125 °C; V _{DD} = V _{DRM} ;	$V_{RD} = V_{RRM}$		max. 10	mA K/W
R _{th(j-s)} T					1,2 - 40 + 125	°C
T _{vj} V _{GT}	т.=	25 °C; d.c.			3	v
I _{GT}	$T_{vi} = 25 \text{ °C; d.c.}$				100	mA
V _{GD}	-''				0,25	V
I _{GD}	,	T _{vi} = 125 °C; d.c.			3	mA
Diode						
V_F $T_{vi} = °C; (I_F = A); max.$						V
V _(TO)	T _{vi} =					V
r _T	$T_{vj} = °C$					mΩ
I _{RD}	T _{vj} =	$T_{vj} = °C; V_{RD} = V_{RRM}$				mA
R _{th(j-s)}						K/W
T _{vj}						°C
Mechanical data						
V _{isol}	a.c. 50 Hz; r.m.s.; 1 min / 1s				2500 (3000)	V
M ₁	mou	nting torque			2,5	Nm
w					30	g
Case	SEM	IITOP [®] 3			T56	
L						1




28-02-2006 DIL


SK 45 STA





SK 45 STA

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.