

SEMITOP ${ }^{\circledR} 1$

Antiparallel Thyristor
 Module

SK 70 KQ

Preliminary Data

Features

- Compact Design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DBC)
- Glass passived thyristor chips
- Up to 1600 V reverse voltage
- UL recognized, file no. E 63532

Typical Applications*

- Soft starters
- Light control (studios, theaters...)
- Temperature control

$V_{\text {RSM }}$	$\mathrm{V}_{\text {RRM }}, \mathrm{V}_{\text {DRM }}$	$\mathrm{I}_{\text {RMS }}=72 \mathrm{~A} \mathrm{~A}$ (full conduction)
V	V	$\left(\mathrm{T}_{\mathrm{s}}=85^{\circ} \mathrm{C}\right)$
900	800	SK 70 KQ 08
1300	1200	SK 70 KQ 12
1700	1600	SK 70 KQ 16

Symbol	Conditions	Values	Units
$\mathrm{I}_{\text {RMS }}$	$\begin{aligned} & \mathrm{W} 1 \mathrm{C} ; \sin .180^{\circ} ; \mathrm{T}_{\mathrm{s}}=100^{\circ} \mathrm{C} \\ & \mathrm{~W} 1 \mathrm{C} ; \sin .180^{\circ} ; \mathrm{T}_{\mathrm{s}}=85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 50 \\ & 72 \end{aligned}$	A A
$\begin{array}{\|l} \hline \mathrm{I}_{\mathrm{TSM}} \\ \mathrm{i}^{2 \mathrm{t}} \end{array}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; 10 \mathrm{~ms} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} ; 10 \mathrm{~ms} \\ & \mathrm{~T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; 8,3 \ldots 10 \mathrm{~ms} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} ; 8,3 \ldots 10 \mathrm{~ms} \end{aligned}$	$\begin{gathered} 1000 \\ 900 \\ 5000 \\ 4000 \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~A} \\ \mathrm{~A}^{2} \mathrm{~S} \\ \mathrm{~A}^{2} \mathrm{~S} \end{gathered}$
$\begin{aligned} & \mathrm{V}_{\mathrm{T}} \\ & \mathrm{~V}_{\mathrm{T}(\mathrm{TO})} \\ & \mathrm{r}_{\mathrm{T}} \\ & \mathrm{I}_{\mathrm{DD} ;} ; \mathrm{I}_{\mathrm{RD}} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{T}}=120 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{RD}}=\mathrm{V}_{\mathrm{RRM}} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{RD}}=\mathrm{V}_{\mathrm{RRM}} \end{aligned}$	max. 1,8 max. 1 max. 6 max. 0,5 max. 15	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~m} \Omega \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$
$\begin{aligned} & \mathrm{t}_{\mathrm{gd}} \\ & \mathrm{t}_{\mathrm{gr}} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{G}}=1 \mathrm{~A} ; \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{D}}=0,67^{*} \mathrm{~V}_{\mathrm{DRM}} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\mu \mathrm{s}$ $\mu \mathrm{s}$
$\begin{aligned} & (\mathrm{dv} / \mathrm{dt})_{\mathrm{cr}} \\ & (\mathrm{di} / \mathrm{dt})_{\mathrm{cr}} \\ & \mathrm{t}_{\mathrm{q}} \\ & \mathrm{I}_{\mathrm{H}} \\ & \mathrm{I}_{\mathrm{L}} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} ; \mathrm{f}=50 \ldots 60 \mathrm{~Hz} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} ; \text { typ. } \\ & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; \text { typ. / max. } \\ & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{G}}=33 \Omega ; \text { typ. / max. } \end{aligned}$	1000 50 80 $100 / 200$ $200 / 400$	$\mathrm{V} / \mu \mathrm{s}$ A/ $\mu \mathrm{s}$ $\mu \mathrm{s}$ mA mA
$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{GT}} \\ \mathrm{I}_{\mathrm{GT}} \\ \mathrm{~V}_{\mathrm{GD}} \\ \mathrm{I}_{\mathrm{GD}} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} \text {; d.c. } \\ & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; \text { d.c. } \\ & \mathrm{T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} ; \text { d.c. } \\ & \mathrm{T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} \text {; d.c. } \end{aligned}$	$\begin{gathered} \min .2 \\ \min .100 \\ \max .0,25 \\ \max .5 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$
$\begin{aligned} & \mathrm{R}_{\mathrm{th}(j-\mathrm{s})} \\ & \mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{s})} \\ & \mathrm{T}_{\mathrm{vj}} \\ & \mathrm{~T}_{\mathrm{stg}} \\ & \mathrm{~T}_{\text {solder }} \end{aligned}$	cont. per thyristor $\sin 180^{\circ}$ per thyristor cont. per W1C $\sin 180^{\circ}$ per W1C terminals, 10s	$\begin{gathered} \hline 0,8 \\ 0,84 \\ 0,4 \\ 0,42 \\ -40 \ldots+125 \\ -40 \ldots+125 \\ 260 \end{gathered}$	K/W K/W K/W K/W ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$
$\begin{array}{\|l} \hline V_{\text {isol }} \\ M_{s} \\ M_{t} \\ a \\ m \end{array}$	a. c. 50 Hz ; r.m.s.; $1 \mathrm{~s} / 1 \mathrm{~min}$. Mounting torque to heatsink	$\begin{gathered} 3000 / 2500 \\ 1,5 \end{gathered}$ 13	$\begin{gathered} \hline \mathrm{V} \sim \\ \mathrm{Nm} \\ \mathrm{Nm} \\ \mathrm{~m} / \mathrm{s}^{2} \\ \mathrm{~g} \end{gathered}$
Case	SEMITOP ${ }^{\circledR} 1$	T 1	

Case T1

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

