SKKE 290F

SEMIPACK[®] 2

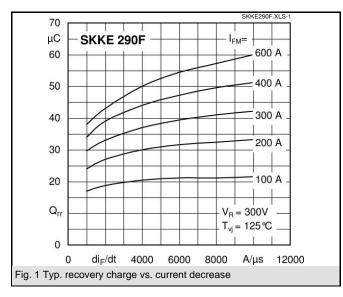
Fast Diode Modules

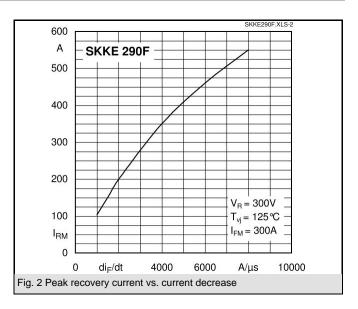
SKKE 290F

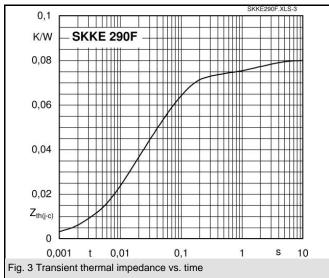
Preliminary Data

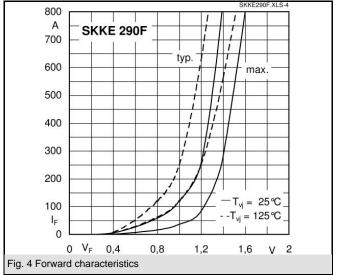
Features

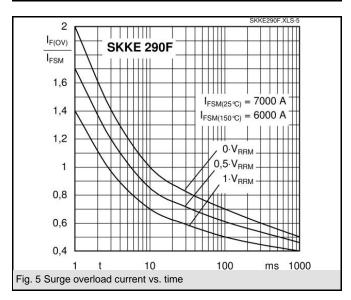
- CAL (controlled axial lifetime) chip technology, patent No. DE 43 10 44
- Very soft recovery over the whole current range
- · Very short recovery times
- · Low switching losses
- Heat transfer through ceramic isolated metal baseplate
- Materials and distances according to UL

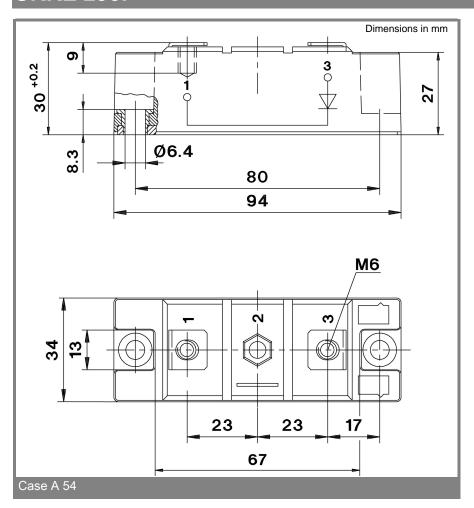

Typical Applications*


- · Self-commutated inverters
- DC choppers
- AC motor speed control
- Inductive heating
- Uninterruptible power supplies
- Electronic welders
- General power switching applications


V_{RSM}	V_{RRM}	I _{FRMS} = 455 A (maximum value for continuous operation)		
V	V	I_{FAV} = 290 A (sin. 180; 50 Hz; T_c = 109 °C)		
600	600	SKKE 290F06		


Symbol	Conditions	Values	Units
I _{FAV}	sin. 180; T _c = 85 (100) °C	390 (330)	Α
I _{FSM}	T _{vi} = 25 °C; 10 ms	7000	Α
	T _{vi} = 150 °C; 10 ms	6000	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	245000	A²s
	T _{vj} = 150 °C; 8,3 10 ms	180000	A²s
V_{F}	T _{vj} = 25 °C; I _F = 400 A	max. 1,45	V
$V_{(TO)}$	T _{vj} = 150 °C	max. 0,9	V
r _T	T _{vj} = 150 °C	max. 1,2	mΩ
I_{RD}	$T_{vj} = 25 ^{\circ}\text{C}; V_{RD} = V_{RRM}$	max. 0,4	mA
I_{RD}	T_{vj} = 150 °C; $V_{RD} = V_{RRM}$	max. 60	mA
Q _{rr}	T _{vi} = 125 °C, I _F = 300 A,	33,5	μC
I _{RM}	-di/dt = 1600 A/µs, V _R = 300 V	160	Α
t _{rr}		580	ns
E _{rr}		3,6	mJ
R _{th(j-c)}		0,08	K/W
R _{th(c-s)}		0,05	K/W
T _{vj}		- 40 + 150	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
M _s	to heatsink	5 ± 15 %	Nm
M _t	to terminals	5 ± 15 %	Nm
а		5 * 9,81	m/s²
m	approx.	160	g
Case		A 54	





^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.