SKKT 20, SKKT 20B

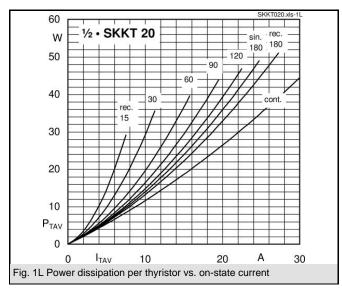
SEMIPACK[®] 1

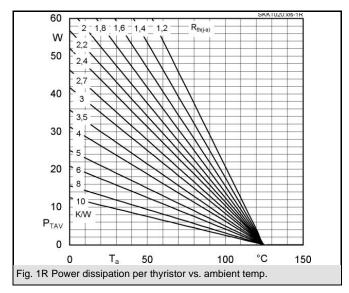
Thyristor / Diode Modules

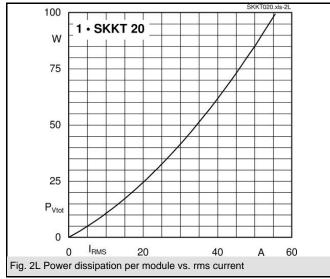
SKKT 20 SKKT 20B

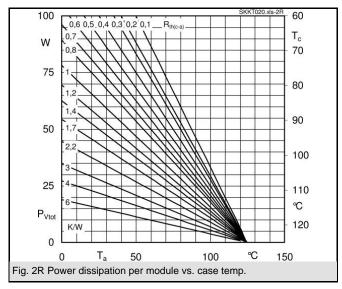
Features

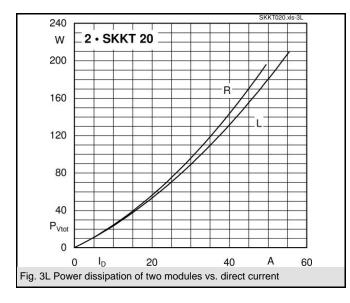
- Heat transfer through aluminium oxide ceramic isolated metal baseplate
- Hard soldered joints for high reliability
- UL recognized, file no. E 63 532

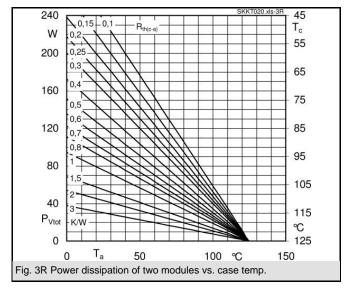

Typical Applications*

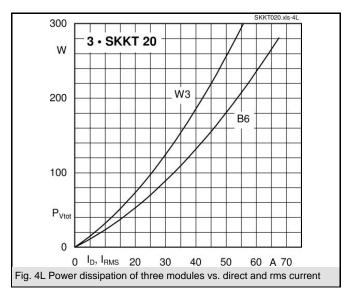

- DC motor control (e. g. for machine tools)
- · AC motor soft starters
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions

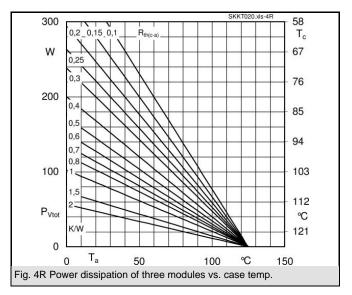

V _{RSM}	V _{RRM} , V _{DRM}	I _{TRMS} = 40 A (maximum value for continuous operation)		
V	V	I _{TAV} = 20 A (sin. 180; T _c = 80 °C)		
900	800	SKKT 20/08E	SKKT 20B08E	
1300	1200	SKKT 20/12E	SKKT 20B12E	
1500	1400	SKKT 20/14E	SKKT 20B14E	
1700	1600	SKKT 20/16E	SKKT 20B16E	

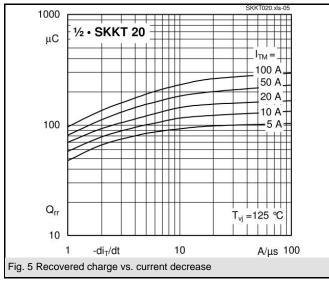

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 85 (100) °C;	18 (13)	Α
I_D	P3/180; T _a = 45 °C; B2 / B6	31 / 38	Α
	P3/180F; T _a = 35 °C; B2 / B6	46 /60	Α
I _{RMS}	P3/180; T _a = 45 °C; W1 / W3	42 / 3 * 30	Α
I _{TSM}	T _{vj} = 25 °C; 10 ms	320	Α
	T _{vj} = 125 °C; 10 ms	280	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	510	A²s
	T _{vj} = 125 °C; 8,3 10 ms	390	A²s
V_T	T _{vj} = 25 °C; I _T = 75 A	max. 2,3	V
$V_{T(TO)}$	T _{vj} = 125 °C	max. 1	V
r _T	T _{vj} = 125 °C	max. 16	mΩ
$I_{DD}; I_{RD}$	T_{vj} = 125 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 10	mA
t _{gd}	$T_{vj} = 25 \text{ °C}; I_G = 1 \text{ A}; di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	V _D = 0,67 * V _{DRM}	1	μs
(di/dt) _{cr}	T _{vi} = 125 °C	max. 150	A/µs
(dv/dt) _{cr}	T _{vi} = 125 °C	max. 1000	V/µs
t_q	$T_{vj} = 125 ^{\circ}\text{C}$,	80	μs
I _H	T_{vj} = 25 °C; typ. / max.	100 / 200	mA
IL	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	250 / 400	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 150	mA
V_{GD}	T_{vj}^{*} = 125 °C; d.c.	max. 0,25	V
I_{GD}	T _{vj} = 125 °C; d.c.	max. 5	mA
R _{th(j-c)}	cont.; per thyristor / per module	1,2 / 0,6	K/W
R _{th(j-c)}	sin. 180; per thyristor / per module	1,3 / 0,65	K/W
R _{th(j-c)}	rec. 120; per thyristor / per module	1,35 / 0,68	K/W
R _{th(c-s)}	per thyristor / per module	0,2 / 0,1	K/W
T_{vj}		- 40 + 125	°C
T_{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
M _s	to heatsink	5 ± 15 % ¹⁾	Nm
M_t	to terminal	3 ± 15 %	Nm
а		5 * 9,81	m/s²
m	approx.	95	g
Case	SKKT	A 46	
	SKKTB	A 48	
			1

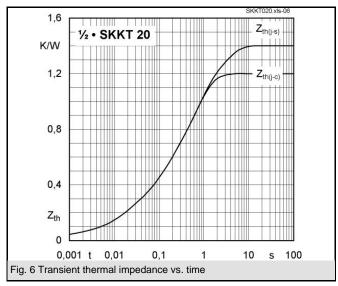


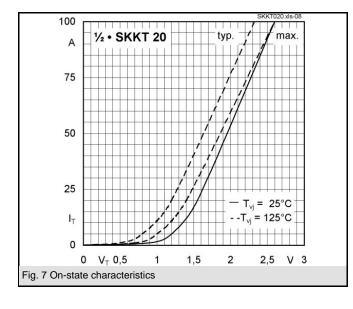


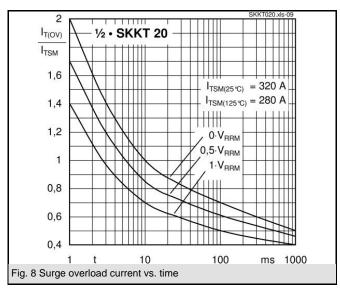


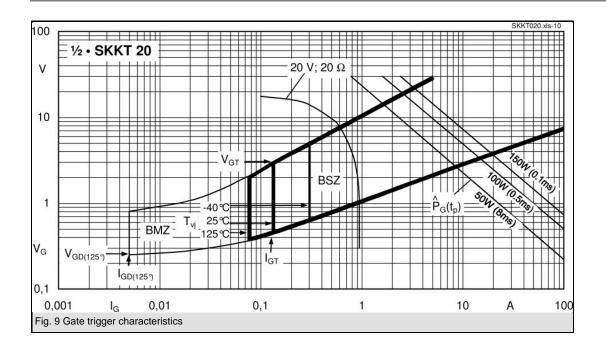


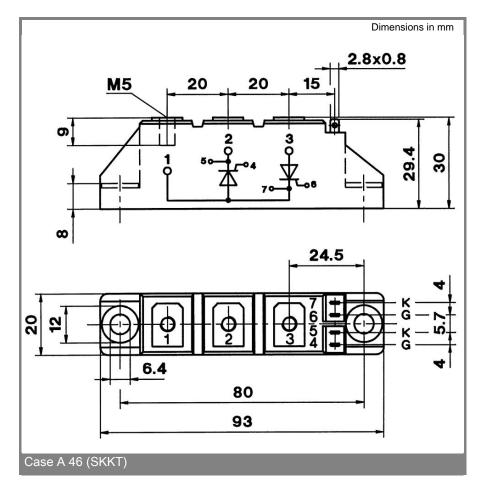


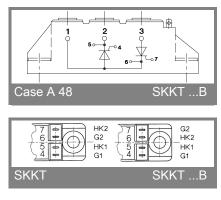



SKKT 20, SKKT 20B









^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.