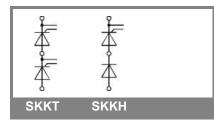
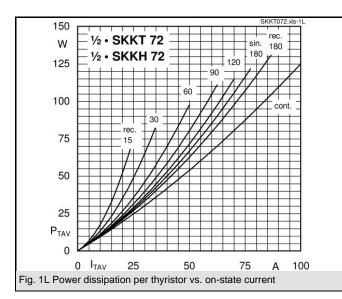
SKKT 72 H4, SKKH 72 H4

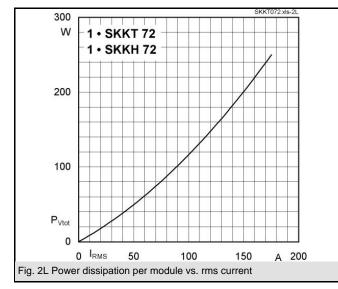
SEMIPACK[®] 1

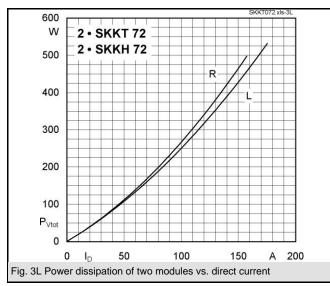
Thyristor / Diode Modules

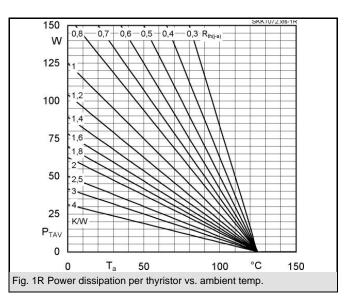
SKKT 72 H4 SKKH 72 H4

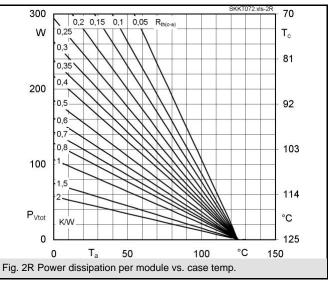

Features

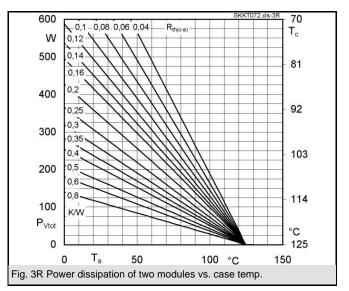

- Heat transfer through aluminium oxide ceramic isolated metal baseplate
- Hard soldered joints for high reliability
- UL recognized, file no. E 63532

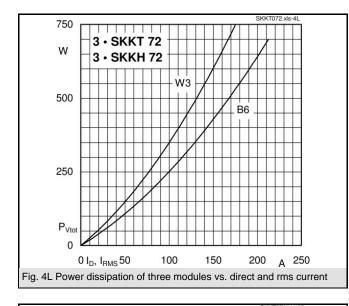

Typical Applications*

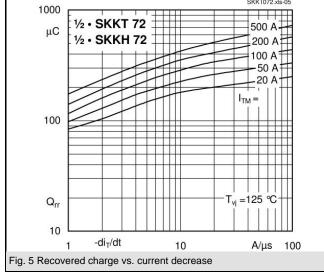

- DC motor control (e. g. for machine tools)
- AC motor soft starters
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions

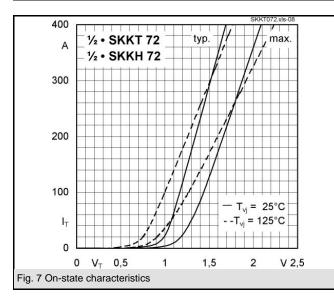

V _{RSM} V _{RRM} , V _{DRM} I _{TRMS} = 125 A (maximum value for continuous operation)							
V _{RSM}							
V 2100		2000	I _{TAV} = 70 A (sin. 180; T _c = 85 °C) SKKT 72/20E H4 SKKH 72/20E H4				
2100 2300		2000	SKKT 72/20E H4 SKKT 72/22E H4		KH 72/20E H4		
2300		2200		01			
Symbol	nbol Conditions				Values U		Units
I _{TAV}		sin. 180; T _c = 85 (100) °C;			70 (50)		А
I _D		/180; T _a = 45 °C;			62 / 75		A
		3/180F; T _a = 35 °C; B2 / B6			115 /145		A
I _{RMS}	P3/	/180F; T _a = 35 °C	; W1 / W3		155 / 3 * 115		А
I _{TSM}	T _{vj} = 25 °C; 10 ms				1600		Α
	T _{vj} = 125 °C; 10 ms				1450		Α
i²t		= 25 °C; 8,3 10 ms			13000		A²s
		= 125 °C; 8,3 10 ms			10500		A²s
V _T	$T_{vj} = 25 \text{ °C; } I_T = 300 \text{ A}$				max. 1,9		V
V _{T(TO)}	$T_{vj} = 125 ^{\circ}C$				max. 0,9		V
r _T	T _{vj} = 125 °C				max. 3,5		mΩ
I _{DD} ; I _{RD}	$T_{vj} = 125 \text{ °C}; V_{RD} = V_{RRM}; V_{DD} = V_{DRM}$				max. 30		mA
t _{gd}	T _{vj} = 25 °C; I _G = 1 A; di _G /dt = 1 A/μs				1		μs
t _{gr}	V _D = 0,67 * V _{DRM}				1		μs
(di/dt) _{cr}	T _{vj} = 125 °C						A/µs
(dv/dt) _{cr}	$T_{vj} = 125 \ ^{\circ}C$						V/µs
t _q	$T_{vj} = 125 \text{ °C}$,						μs
I _Н		= 25 °C; typ. / ma					mA
ΙL	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.						mA
V _{GT}	$T_{vj} = 25 ^{\circ}C; d.c.$				min. 3		V
I _{GT}	$T_{vj} = 25 ^{\circ}C; d.c.$				min. 150		mA
V _{GD}	,	= 125 °C; d.c.			, -		V
I _{GD}	T _{vj} = 125 °C; d.c.						mA
R _{th(j-c)}	cont.; per thyristor / per module				, ,		K/W
R _{th(j-c)}		sin. 180; per thyristor / per module			-,, -		K/W
R _{th(j-c)}		rec. 120; per thyristor / per module			, ,		K/W
R _{th(c-s)} T	per	r thyristor / per mo	ouie		0,2 / 0,1 K/W - 40 + 125 °C		
I _{vj} T							°C
T _{stg}		50.11			- 40 +		
V _{isol}		a. c. 50 Hz; r.m.s.; 1 s / 1 min.					V~
M _s	to heatsink to terminals						Nm Nm
M _t a							m/s ²
a m	an	orox			95		
	approx.						g
Case	ase SKKT SKKH				A 46 A 47		
	SA	INT I			A 47		
1	1						1

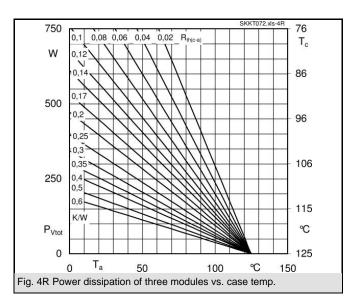


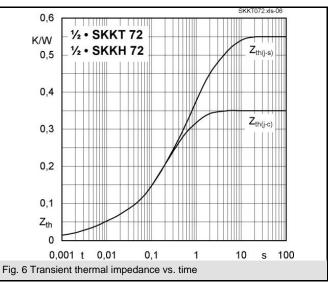


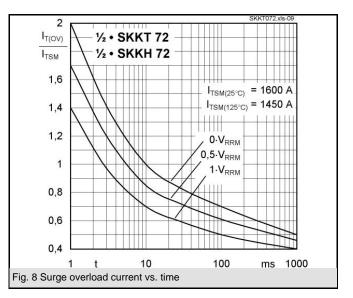


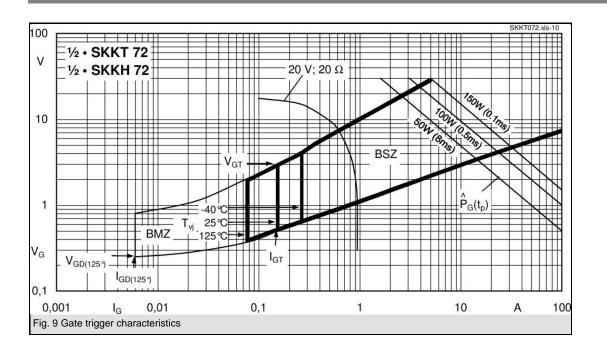


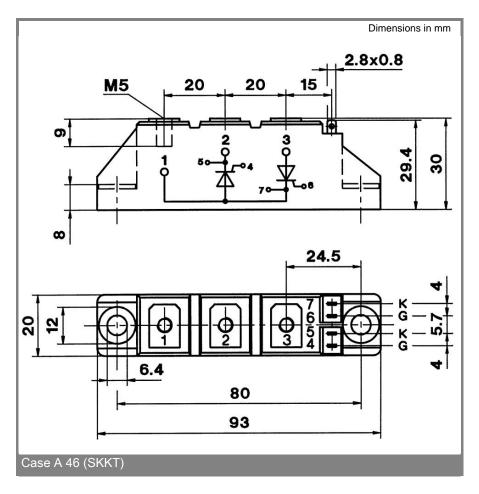


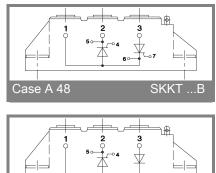

2


SKKT 72 H4, SKKH 72 H4









SKKH

Case A 47

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.