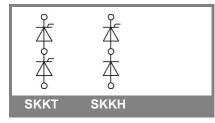
SKKT 15, SKKH 15

SEMIPACK[®] 0

Thyristor / Diode Modules

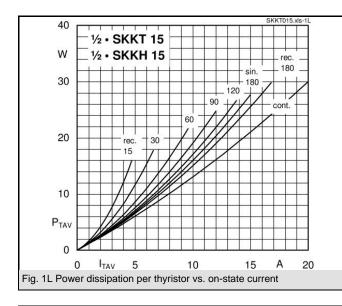
SKKT 15 SKKH 15

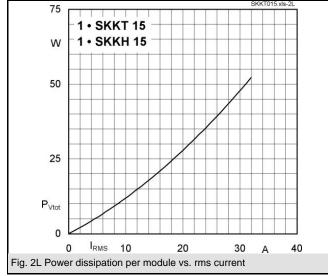
Features

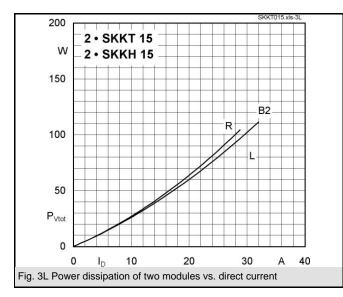

- Heat transfer through aluminium oxide ceramic isolated metal baseplate
- Hard soldered joints for high reliability
- UL recognized, file no. E 63 532

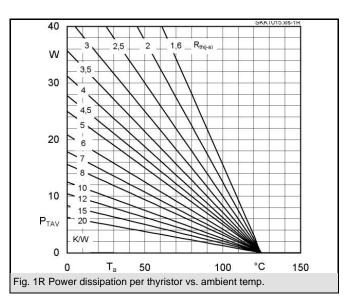
Typical Applications*

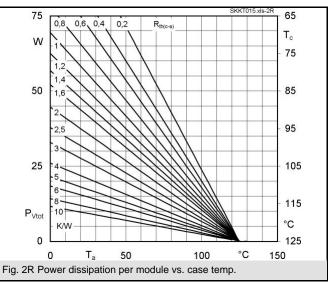
- DC motor control (e. g. for machine tools)
- Temperature control (e. g.for ovens, chemical processes)
- Professional light dimming (studios, theaters)

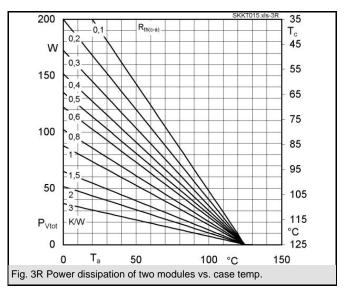

V _{RSM}	V _{RRM} , V _{DRM}	I _{TRMS} = 24 A (maximum value for continuous operation)		
V	V	I _{TAV} = 15 A (sin. 180; T _c = 75 °C)		
700	600	SKKT 15/06E	SKKH 15/06E	
900	800	SKKT 15/08E	SKKH 15/08E	
1300	1200	SKKT 15/12E	SKKH 15/12E	
1500	1400	SKKT 15/14E	SKKH 15/14E	
1700	1600	SKKT 15/16E	SKKH 15/16E	

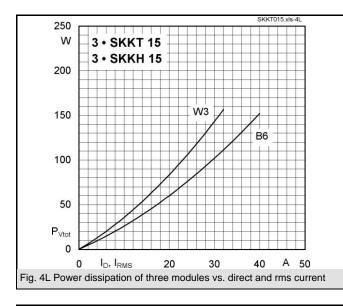

Symbol	Conditions	Values	Units
ITAV	sin. 180; T _c = 85 (100) °C;	13,5 (9,5)	А
I _D	P13A/100; T _a = 45 °C; B2 / B6	14 / 17	А
I _{RMS}	P13A/100; T _a = 45 °C; W1 / W3	21 / 3 x 12	А
I _{TSM}	T _{vj} = 25 °C; 10 ms	320	А
	T _{vj} = 125 °C; 10 ms	280	А
i²t	T _{vj} = 25 °C; 8,3 10 ms	510	A²s
	T _{vj} = 125 °C; 8,3 10 ms	390	A²s
V _T	T _{vj} = 25 °C; I _T = 75 A	max. 2,45	V
V _{T(TO)}	T _{vj} = 125 °C	max. 1,1	V
r _T	T _{vj} = 125 °C	max. 20	mΩ
I _{DD} ; I _{RD}	T_{vj} = 125 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 8	mA
t _{gd}	T _{vj} = 25 °C; I _G = 1 A; di _G /dt = 1 A/μs	1	μs
t _{gr}	V _D = 0,67 * V _{DRM}	1	μs
(di/dt) _{cr}	T _{vi} = 125 °C	max. 100	A/µs
(dv/dt) _{cr}	T _{vj} = 125 °C	max. 1000	V/µs
t _q	T _{vj} = 125 °C ,	80	μs
I _H	T _{vj} = 25 °C; typ. / max.	80 / 150	mA
I _L	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	150 / 300	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I _{GT}	T _{vj} = 25 °C; d.c.	min. 100	mA
V _{GD}	T _{vj} = 125 °C; d.c.	max. 0,25	V
I _{GD}	T _{vj} = 125 °C; d.c.	max. 5	mA
R _{th(j-c)}	cont.; per thyristor / per module	1,6 / 0,8	K/W
R _{th(j-c)}	sin. 180; per thyristor / per module	1,7 / 0,9	K/W
R _{th(j-c)}	rec. 120; per thyristor / per module	1,8 / 0,9	K/W
R _{th(c-s)}	per thyristor / module	0,2 / 0,1	K/W
T _{vj}		- 40 + 125	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
M _s	to heatsink	1,5 ± 15 %	Nm
а		5 * 9,81	m/s²
m	approx.	50	g
Case	SKKT	A 1	
	SKKH	A 2	

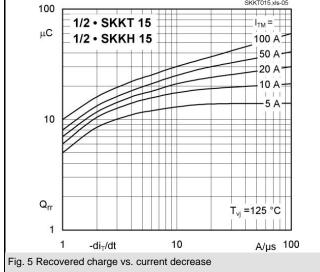


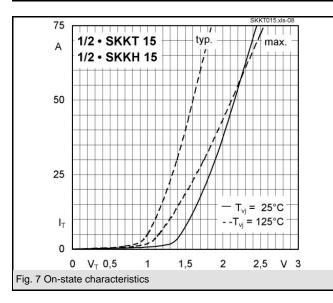

21-10-2004 CAS

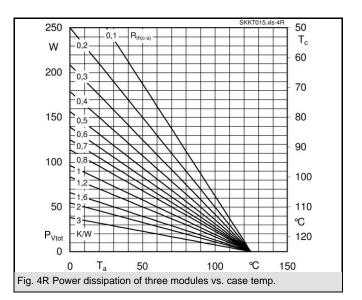


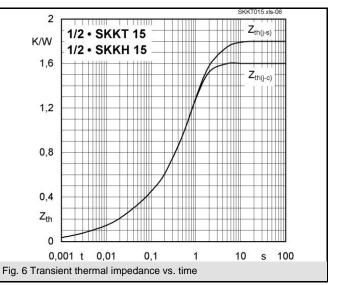


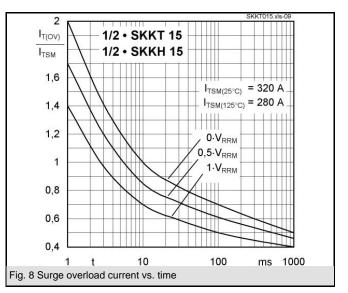


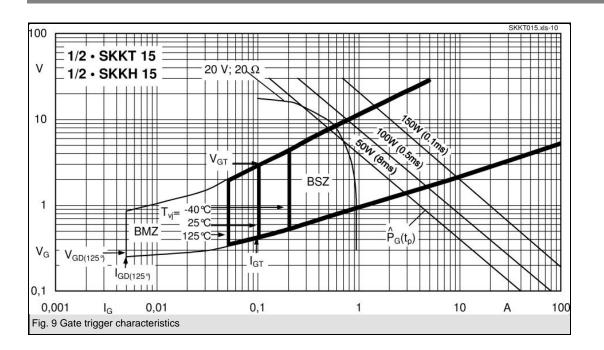


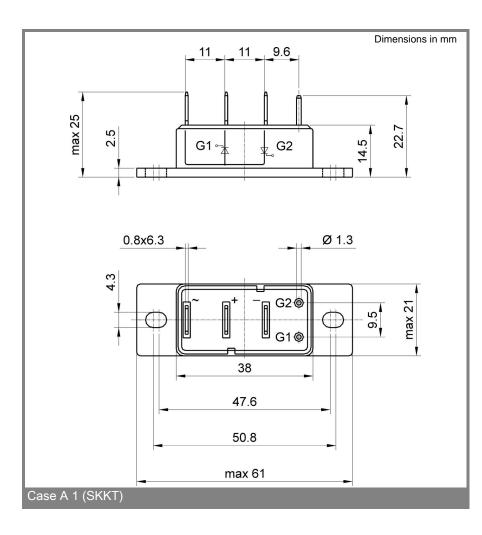



2


SKKT 15, SKKH 15







G1 - SKKH

© by SEMIKRON

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON

21-10-2004 CAS

Δ

SKKT 15, SKKH 15

products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.