SKKT 122, SKKH 122

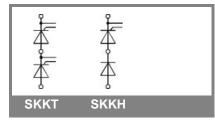
e	and and
P	SEMIKON Seminora 1901 Sour 122/18 E

SEMIPACK[®] 2

Thyristor / Diode Modules

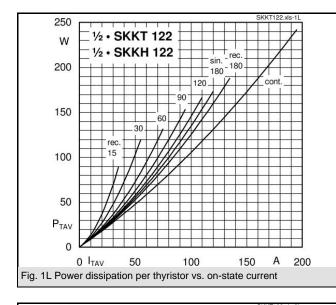
SKKT	122
SKKH	122

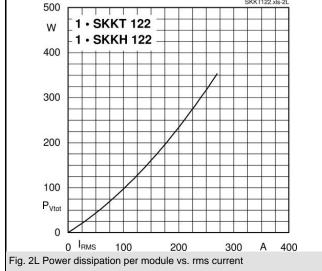
Features

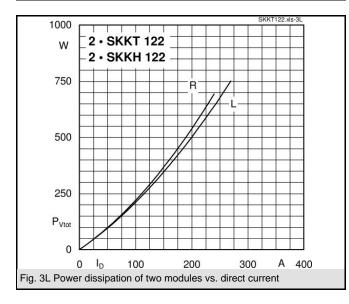

- Heat transfer through aluminium oxide ceramic isolated metal baseplate
- Hard soldered joints for high reliability
- UL recognized, file no. E 63 532

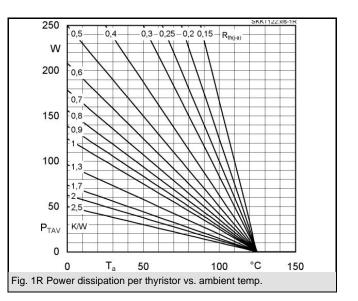
Typical Applications*

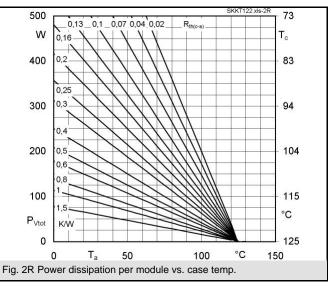
- DC motor control (e. g. for machine tools)
 Softstarter
- Temperature control
 (e. g. for ovens, chemical
 processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions

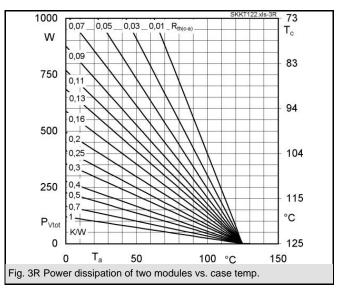

V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 195 A (maximum value for continuous operation)		
V	V	I _{TAV} = 122 A (sin. 180; T _c = 88 °C)		
900	800	SKKT 122/08E	SKKH 122/08E	
1300	1200	SKKT 122/12E	SKKH 122/12E	
1500	1400	SKKT 122/14E	SKKH 122/14E	
1700	1600	SKKT 122/16E	SKKH 122/16E	
1900	1800	SKKT 122/18E	SKKH 122/18E	

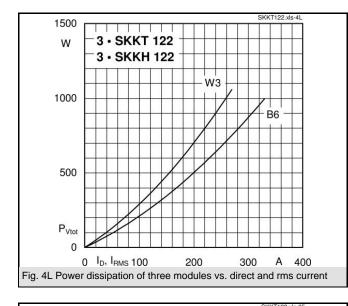

Symbol	Conditions	Values	Units
ITAV	sin. 180; T _c = 85 (100) °C;	129 (92)	А
I _D	P3/180; T _a = 45 °C; B2 / B6	82 / 105	Α
	P3/180F; T _a = 35 °C; B2 / B6	170 /200	Α
I _{RMS}	P3/180F; T _a = 35 °C; W1 / W3	235 / 3 * 160	А
I _{TSM}	T _{vi} = 25 °C; 10 ms	3600	A
	T _{vi} = 125 °C; 10 ms	3200	Α
i²t	T _{vi} = 25 °C; 8,3 10 ms	64800	A²s
	T _{vj} = 125 °C; 8,3 10 ms	51200	A²s
V _T	T _{vi} = 25 °C; I _T = 360 A	max. 1,55	V
V _{T(TO)}	T _{vi} = 125 °C	max. 0,85	V
r _T	T _{vj} = 125 °C	max. 2	mΩ
I _{DD} ; I _{RD}	T_{vj} = 125 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 40	mA
t _{gd}	T _{vj} = 25 °C; I _G = 1 A; di _G /dt = 1 A/μs	1	μs
t _{gr}	V _D = 0,67 * V _{DRM}	2	μs
(di/dt) _{cr}	T _{vi} = 125 °C	max. 200	A/µs
(dv/dt) _{cr}	T _{vi} = 125 °C	max. 1000	V/µs
t _q	T _{vi} = 125 °C ,	120	μs
I _H	T _{vj} = 25 °C; typ. / max.	100 / 300	mA
I _L	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	200 / 500	mA
V _{GT}	T _{vi} = 25 °C; d.c.	min. 2	V
I _{GT}	T _{vi} = 25 °C; d.c.	min. 150	mA
V _{GD}	T _{vj} = 125 °C; d.c.	max. 0,25	V
I _{GD}	T _{vj} = 125 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.; per thyristor / per module	0,2 / 0,1	K/W
R _{th(j-c)}	sin. 180; per thyristor / per module	0,21 / 0,105	K/W
R _{th(j-c)}	rec.120; per thyristor / per module	0,22 / 0,11	K/W
R _{th(c-s)}	per thyristor / per module	0,13 / 0,065	K/W
T _{vi}		- 40 + 125	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
M _s	to heatsink	5 ± 15 % ¹⁾	Nm
M _t	to terminal	5 ± 15 %	Nm
а		5 * 9,81	m/s²
m	approx.	165	g
Case	SKKT	A 21	
	SKKH	A 22	

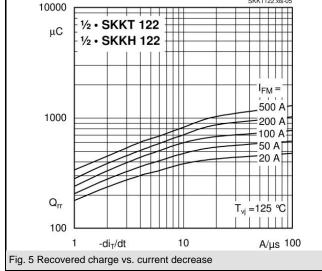


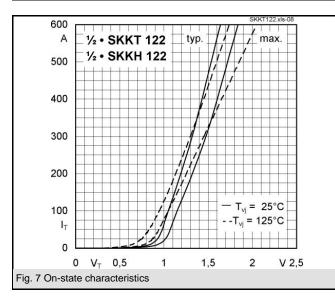

06-02-2004 NOS

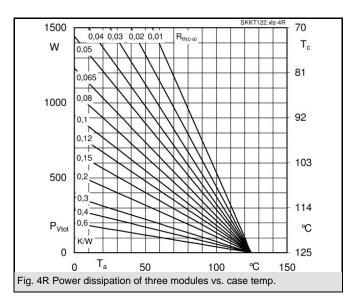


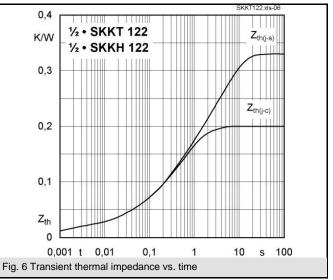


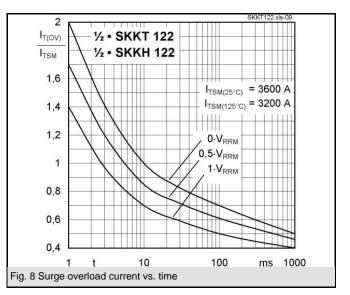


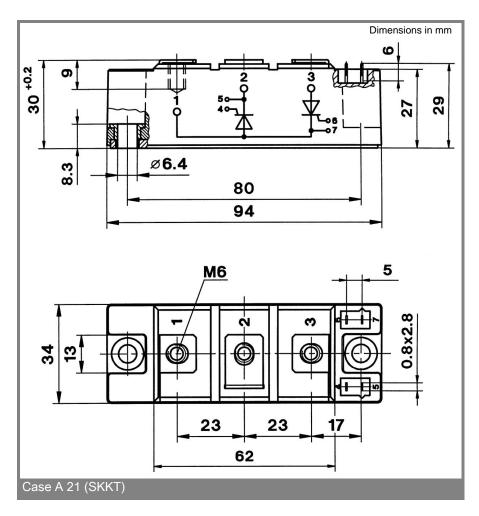







SKKT 122, SKKH 122





Case A 22

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON

Δ

SKKT 122, SKKH 122

products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.