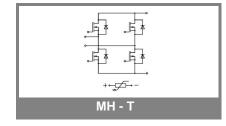
SK 85 MH 10 T

MOSFET Module

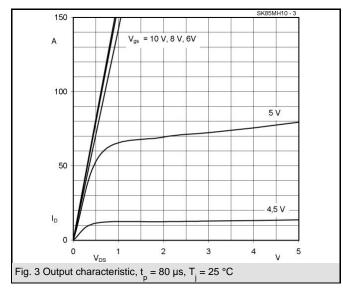
SK 85 MH 10 T

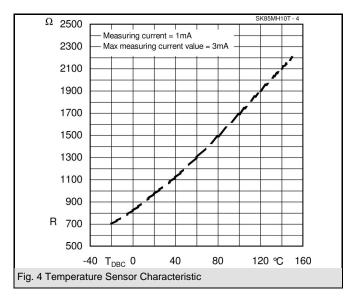
Preliminary Data

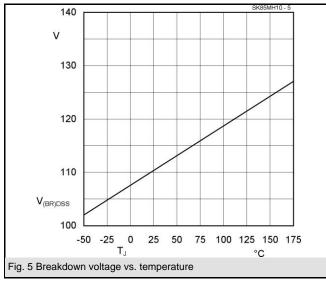
Features

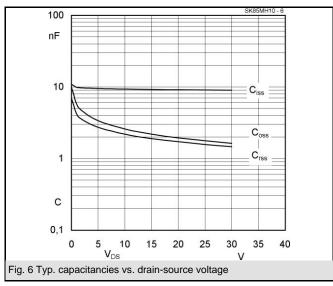

- Compact design
- · One screw mounting
- · Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- Trench-gate technology
- · Short internal connections and low inductance case

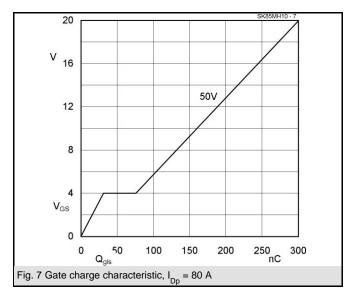
Typical Applications*

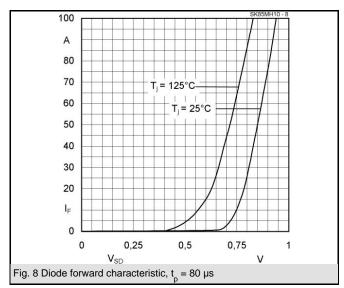

- · Low switched mode power supplies
- DC servo drives
- UPS

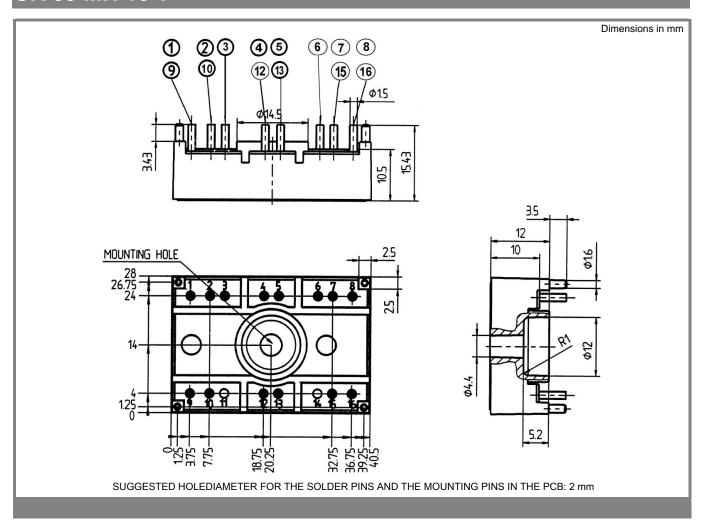

Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
MOSFET							
V_{DSS}		100	V				
V_{GSS}		± 20	V				
I _D	T _s = 25 (80) °C; 1)	80 (60)	Α				
I _{DM}	$t_p < 1 \text{ ms; } T_s = 80 \text{ °C; 1}$	120	Α				
T _j		- 40 + 150	°C				
Inverse diode							
	$T_s = 25 (80) ^{\circ}C;$	80 (60)	Α				
$I_{FM} = -I_{DM}$	$t_p < 1 \text{ ms; } T_s = 80 \text{ () } ^{\circ}\text{C;}$	120	Α				
T_{j}		- 40 + 150	°C				
Freewheeling CAL diode							
$I_F = -I_D$	$T_s = {^{\circ}C}$		Α				
T_j			°C				
T _{stg}		- 40 + 125	°C				
T _{sol}	Terminals, 10 s	260	°C				
V _{isol}	AC, 1 min (1s)	2500 / 3000	V				

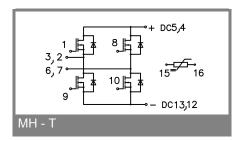

Characte	ristics	T _s = 25 °C,	T _s = 25 °C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units		
MOSFET							
V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 5.6 \text{ mA}$	100			V		
$V_{GS(th)}$	$V_{GS} = V_{DS}$; $I_D = 5.6 \text{ mA}$	2,5	3,3		V		
I _{DSS}	$V_{GS} = 0 \text{ V; } V_{DS} = V_{DSS}; T_j = 25 \text{ °C}$			100	μA		
I _{GSS}	$V_{GS} = \pm 20V ; V_{DS} = 0 V$			100	nA		
R _{DS(on)}	$I_D = 80 \text{ A}; V_{GS} = 10 \text{ V}; T_j = 25 ^{\circ}\text{C}$			7,5	mΩ		
R _{DS(on)}	$I_D = 80 \text{ A}; V_{GS} = 10 \text{ V}; T_j = 125 ^{\circ}\text{C}$			13,5	mΩ		
C _{CHC}	per MOSFET				pF		
C _{iss}	under following conditions:		9,1		nF		
C _{oss}	$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$		1,8		nF		
C _{rss}			1,6		nF		
L _{DS}					nH		
t _{d(on)}	under following conditions:		300		ns		
t _r	$V_{DD} = 50 \text{ V}; V_{GS} = 10 \text{ V};$ $I_{D} = 50 \text{ A}$		140		ns		
$t_{d(off)}$	$R_G = 56 \Omega$		1550		ns		
t _f			150		ns		
R _{th(j-s)}	per MOSFET (per module)			1,1	K/W		
Inverse d	liode						
V_{SD}	$I_F = 50 \text{ A}; V_{GS} = 0 \text{ V}; T_j = {^{\circ}C}$		0,9		V		
I _{RRM}	under following conditions:		24		Α		
Q_{rr}	$I_F = 50 \text{ A}; T_{vj} = 25 \text{ °C}; R_G = 56 \Omega$		0,9		μC		
t _{rr}	V _R = 65 A; di/dt = 100 A/μs		70		ns		
Free-whe	eling diode						
V _F	$I_F = A; V_{GS} = V$				V		
I _{RRM}	under following conditions:				Α		
Q _{rr}	I _F = A; T _{vj} = °C				μC		
t _{rr}	$V_r = A$; di/dt = A/ μ s				ns		
Mechanic							
M1	mounting torque			2	Nm		
W			20		g		
Case							




SK 85 MH 10 T







This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.