

MiniSKiiP[®]2

3-phase bridge inverter

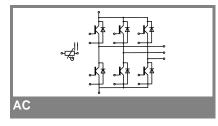
SKiiP 23AC126V1

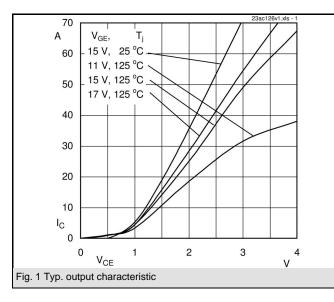
Preliminary Data

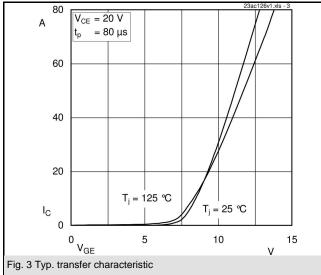
Features

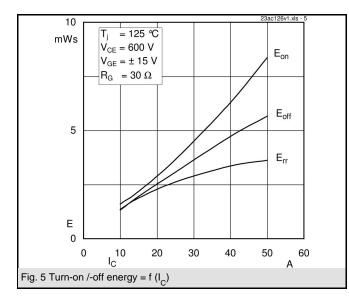
- Fast Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

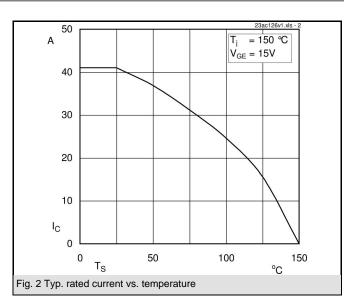
Typical Applications

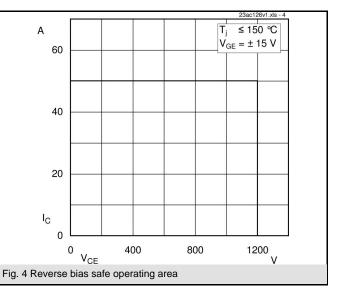

- Inverter up to 16 kVA
- Typical motor power 7,5 kW

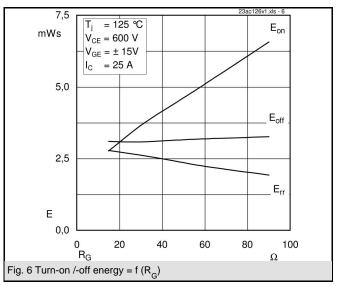

Remarks

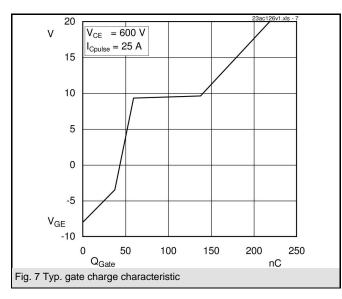

• V_{CEsat} , V_F = chip level value

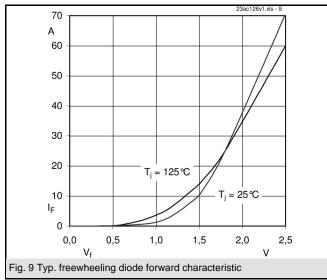

Absolute Maximum Ratings		T_S = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT - Inverter								
V _{CES}		1200	V					
I _C	T _s = 25 (70) °C	41 (31)	А					
I _{CRM}	t _p ≤ 1 ms	50	А					
V _{GES}		± 20	V					
т _ј		-40+150	°C					
Diode - Inverter								
I _F	T _s = 25 (70) °C	30 (22)	А					
I _{FRM}	t _p ≤ 1 ms	50	А					
Тj		-40+150	°C					
I _{tRMS}	per power terminal (20 A / spring)	100	А					
T _{stg}	$T_{op} \leq T_{stg}$	-40+125	°C					
V _{isol}	AC, 1 min.	2500	V					

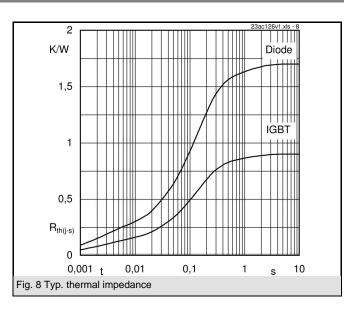

Characteristics		T _S = 25 °C	$T_S = 25 \text{ °C}$, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT - In	verter					
V _{CEsat}	I _{Cnom} = 25 A, T _i = 25 (125) °C		1,7 (2)	2,1 (2,4)	V	
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 1 \text{ mA}$	5	5,8	6,5	V	
V _{CE(TO)}	T _j = 25 (125) °C		1 (0,9)	,	V	
r _T	T _j = 25 (125) °C		28 (44)	36 (52)	mΩ	
C _{ies}	$V_{CE} = 25 V, V_{GE} = 0 V, f = 1 MHz$		1,8		nF	
C _{oes}	$V_{CE} = 25 V, V_{GE} = 0 V, f = 1 MHz$		0,3		nF	
C _{res}	V_{CE} = 25 V, V_{GE} = 0 V, f = 1 MHz		0,2		nF	
R _{th(j-s)}	per IGBT		0,9		K/W	
t _{d(on)}	under following conditions		80		ns	
t _r	V_{CC} = 600 V, V_{GE} = ± 15 V		30		ns	
t _{d(off)}	I _{Cnom} = 25 A, T _j = 125 °C		480		ns	
t,	$R_{Gon} = R_{Goff} = 30 \Omega$		85		ns	
Ė _{on}	inductive load		3,7		mJ	
E _{off}			3,1		mJ	
Diode - I	nverter					
$V_F = V_{EC}$			1,8 (1,8)	2,1 (2,2)	V	
V _(TO)	T _j = 25 (125) °Č		1 (0,8)	1,1 (0,9)	V	
r _T	T _j = 25 (125) °C		32 (40)	40 (52)	mΩ	
R _{th(j-s)}	per diode		1,7		K/W	
I _{RRM}	under following conditions		35		Α	
Q _{rr}	I _{Fnom} = 25 A, V _R = 600 V		6		μC	
E _{rr}	V _{GE} = 0 V, T _j = 125 °C		2,6		mJ	
	di _F /dt = 1000 A/µs					
Tempera	ture Sensor					
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω	
Mechani	cal Data	•				
m			65		g	
Ms	Mounting torque	2		2,5	Nm	

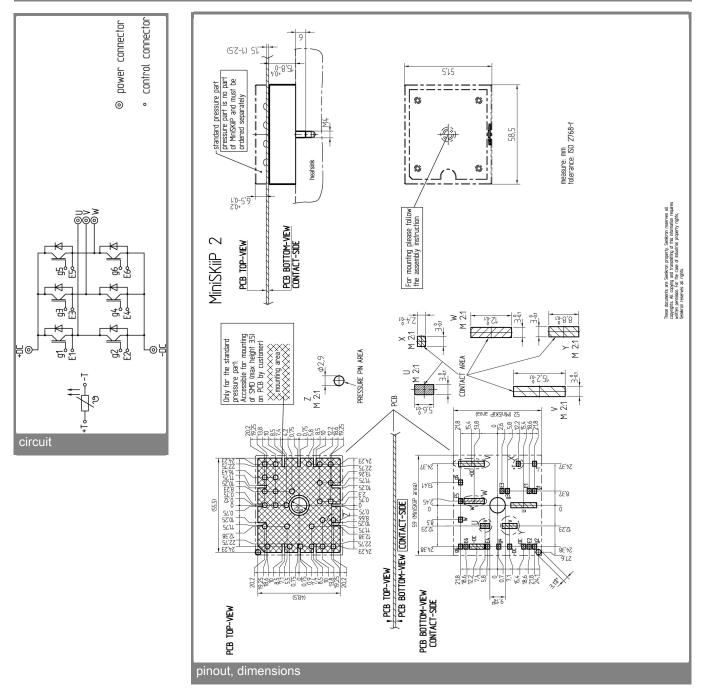












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

4