

IGBT Module

SK75MLI066T

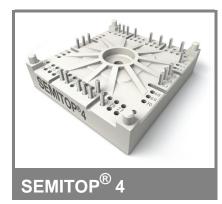
Preliminary Data

Features

- · Compact design
- One screw mounting
- · Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

Typical Applications*

Multi level inverter


Remarks

- V_{isol} = 3000V AC,1s,50Hz
 Dynamic measure: DUT= IGBT (Gate pin 55) and Neutral Clamp Diode (Kathode pin 56) as free-wheeling diode

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified						
Symbol	Conditions			Values	Units	
IGBT					•	
V_{CES}	T _j = 25 °C			600	V	
I _C	T _j = 175 °C	T _s = 25 °C		83	А	
		$T_s = 70 ^{\circ}C$		67	Α	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			150	Α	
V_{GES}				± 20	V	
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C		6	μs	
Inverse D						
I _F	T _j = 175 °C	$T_s = 25 ^{\circ}C$		92	Α	
		T _s = 70 °C		73	Α	
I_{FRM}	I _{FRM} = 2 x I _{Fnom}			150	Α	
Freewhee	ling Diode					
I _F	T _j = 175 °C	$T_s = 25 ^{\circ}C$		92	Α	
		$T_s = 70 ^{\circ}C$		73	Α	
I_{FRM}	$I_{FRM} = 2 \times I_{Fnom}$			150	Α	
Module						
I _{t(RMS)}					Α	
T_{vj}				-40 + 175	°C	
T _{stg}				-40 + 125	°C	
V_{isol}	AC, 1 min.			2500	V	

Character	ristics	25 °C, ur	5 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1.2 \text{ mA}$		5	5,8	6,5	V	
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$	T _j = 25 °C			0,0038	mA	
		T _j = 125 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			600	nA	
V _{CE0}		T _j = 25 °C		0,8	1,1	V	
		T _j = 150 °C		0,7	1	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		8	10	mΩ	
		T _j = 150°C		13	14	$m\Omega$	
V _{CE(sat)}	I _{Cnom} = 75 A, V _{GE} = 15 V			1,45	1,85	V	
		$T_j = 150^{\circ}C_{chiplev.}$		1,65	2,05	V	
C _{ies}				4,7		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,3		nF	
C _{res}				0,145		nF	
Q_G	V _{GE} =-7V+15V			650		nC	
R _{Gint}	T _j = 150 °C			4		Ω	
t _{d(on)}				97		ns	
t _r	$R_{Gon} = 4 \Omega$	V _{CC} = 300V		34		ns	
E _{on}	di/dt = 4100 A/μs	I _C = 75A		1,7		mJ	
t _{d(off)}	$R_{Goff} = 4 \Omega$ di/dt = 4100 A/µs	$T_j = 150 ^{\circ}\text{C}$		339 65		ns	
t _f E _{off}	αι/αι – 4100 Α/μδ	V _{GE} =-7/+15V		2,8		ns mJ	
R _{th(j-s)}	per IGBT			0,75		K/W	

IGBT Module

SK75MLI066T

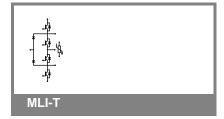
Preliminary Data

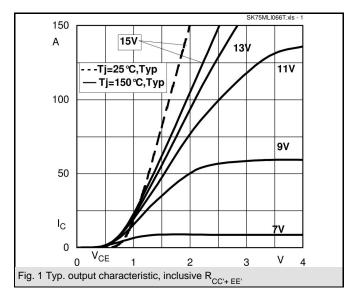
Features

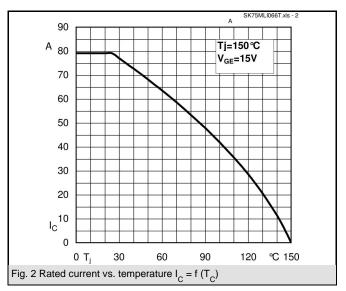
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- · CAL technology FWD
- Integrated NTC temperature sensor

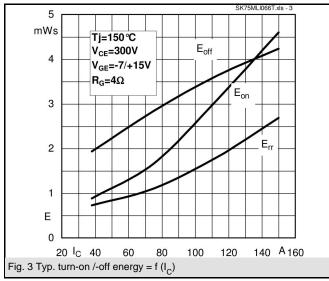
Typical Applications*

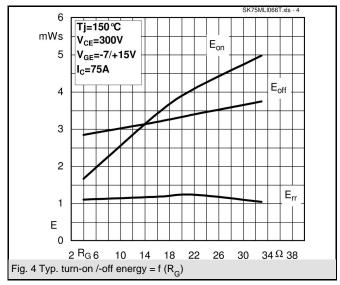
Multi level inverter

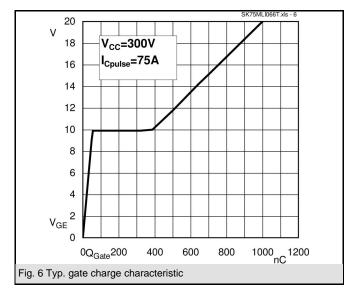

Remarks

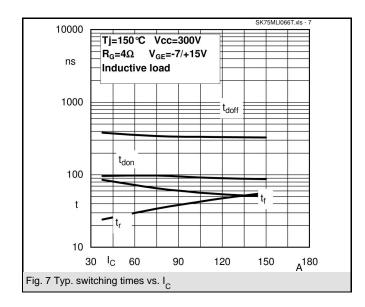

- V_{isol} = 3000V AC,1s,50Hz
- Dynamic measure: DUT= IGBT (Gate pin 55) and Neutral Clamp Diode (Kathode pin 56) as free-wheeling diode

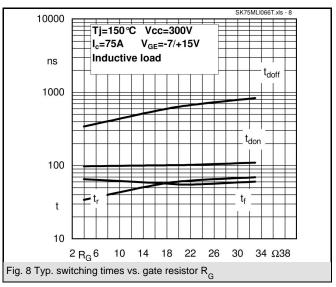

Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D						
$V_F = V_{EC}$	I_{Fnom} = 75 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{chiplev.}$		1,5	1,7	V
		T _j = 150 °C _{chiplev} .		1,5	1,7	V
V_{F0}		T _j = 25 °C		1	1,1	V
		T _j = 150 °C T _j = 25 °C		0,9	1	V
r _F		T _j = 25 °C		6,7	8	mΩ
		T _j = 150 °C T _i = 150 °C		8	9,3	mΩ
I _{RRM}	I _F = 75 A	T _j = 150 °C		65		Α
Q_{rr}	di/dt = 4100 A/μs			4		μC
E _{rr}	V _R = 300V			1,1		mJ
$R_{th(j-s)D}$	per diode			1,2		K/W
	eling Diode (Neutral (Clamp Diode)				
$V_F = V_{EC}$	I_{Fnom} = 75 A; V_{GE} = 0 V			1,5	1,7	V
		$T_j = 150 ^{\circ}C_{\text{chiplev.}}$ $T_j = 25 ^{\circ}C$		1,5	1,7	V
V_{F0}		T _j = 25 °C		1	1,1	V
		T _j = 150 °C		0,9	1	V
r _F		T _j = 25 °C		6,7	8	V
		$T_j = 150 ^{\circ}\text{C}$ $T_j = 150 ^{\circ}\text{C}$		8	9,3	V
I _{RRM}	I _F = 75 A	T _j = 150 °C		65		Α
Q_{rr}	di/dt = 3100 A/μs			4		μC
E _{rr}	V _R =300V			1,1		mJ
$R_{th(j-s)FD}$	per diode			1,2		K/W
M_s	to heat sink		2,5		2,75	Nm
w				60		g
Tempera	ture sensor					
R ₁₀₀	T_s =100°C (R_{25} =5kΩ)			493±5%		Ω

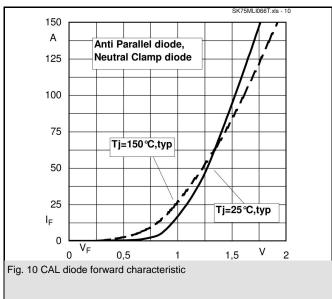

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

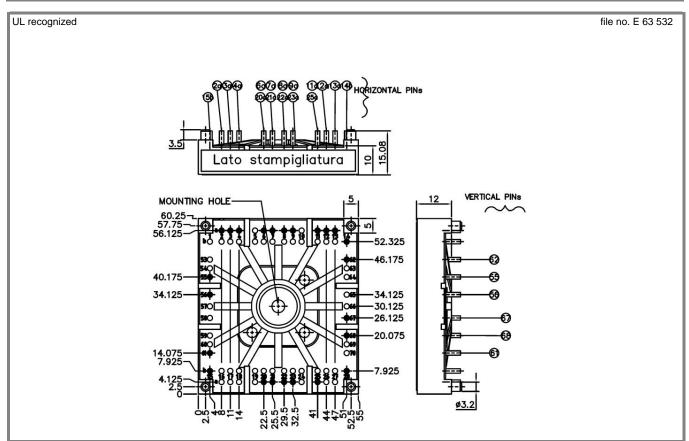

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

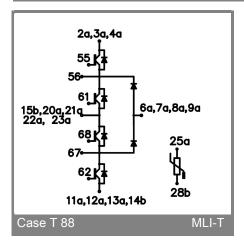












Case T 88 (Suggested hole diameter for the solder pins in the circuit board: 2mm. Suggested hole diameter for the mounting pins in the circuit board: 3,6mm)

