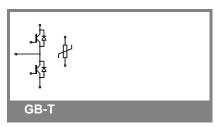


IGBT Module

SK75GB066T

Target Data


Features

- Compact design
- · One scre mounting
- Heat transfer and isolation trough direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL HD technology FWD
- Integrated NTC temperature sensor

Typical Applications*

Remarks

V_{isol} = 3000V AC,50Hz,1s

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified					
Symbol	Conditions		Values	Units	
IGBT	•			•	
V_{CES}	T _j = 25 °C		600	V	
I _C	T _j = 175 °C	T _s = 25 °C	77	Α	
		$T_s = 70 ^{\circ}C$	60	Α	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		150	Α	
V_{GES}			± 20	V	
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 150 °C	6	μs	
Inverse D	Diode				
I _F	1 1	$T_s = 25 ^{\circ}C$	62	Α	
		$T_s = 70 ^{\circ}C$	47	Α	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		150	Α	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	395	Α	
Module					
I _{t(RMS)}				Α	
T _{vj}		•	-40 +175	°C	
T _{stg}			-40 +12 5	°C	
V _{isol}	AC, 1 min.		2500	V	

Characteristics $T_s =$			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT	·		•				
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1.2 \text{ mA}$		5	5,8	6,5	V	
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,0038	mA	
		T _j = 125 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			600	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		0,8	1,1	V	
		T _j = 150 °C		0,7	1	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		8	10	mΩ	
		T _j = 150°C		12,7	14	mΩ	
V _{CE(sat)}	I _{Cnom} = 75 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,45	1,85	V	
		T _j = 150°C _{chiplev} .		1,65	2,05	V	
C _{ies}				4,7		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,3		nF	
C _{res}				0,145		nF	
Q_G	V _{GE} = -7V+15V			700		nC	
t _{d(on)}				95		ns	
t _r	$R_{Gon} = 16 \Omega$	$V_{CC} = 300V$		50		ns	
Ė _{on}	di/dt = 2250 A/μs	I _C = 75A		3,1		mJ	
t _{d(off)}	$R_{Goff} = 16 \Omega$	T _j = 150 °C		541		ns	
t _f	di/dt = 2250 A/μs	V _{GE} = -7/+15 V		70		ns	
E _{off}				2,8		mJ	
$R_{th(j-s)}$	per IGBT			0,94		K/W	

IGBT Module

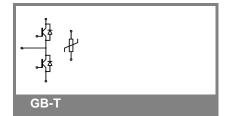
SK75GB066T

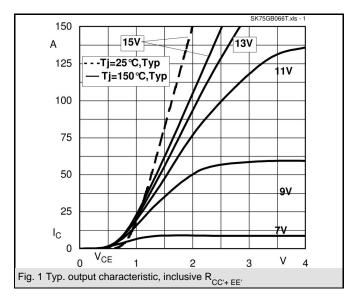
Target Data

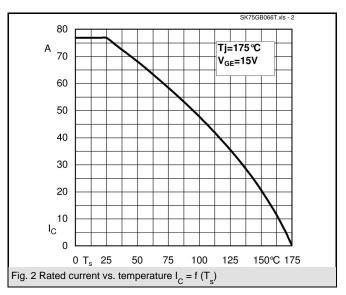
Features

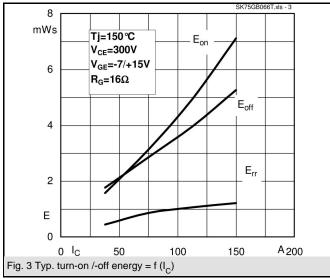
- · Compact design
- · One scre mounting
- Heat transfer and isolation trough direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL HD technology FWD
- Integrated NTC temperature sensor

Typical Applications*


Remarks


V_{isol} = 3000V AC,50Hz,1s


Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	I_{Fnom} = 75 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,35		V		
		$T_j = 150 ^{\circ}C_{chiplev.}$		1,31		V		
V_{F0}		T _j = 25 °C				V		
		T _j = 150 °C		0,85		V		
r _F		T _j = 25 °C				mΩ		
		T _j = 150 °C		7,8		mΩ		
I _{RRM}	I _F = 75 A	T _i = 150 °C		60		Α		
Q_{rr}	di/dt = 2250 A/µs	•		6		μC		
E _{rr}	V _{CC} = 300V			0,85		mJ		
R _{th(j-s)D}	per diode			1,55		K/W		
M _s	to heat sink		2,5		2,75	Nm		
w				60		g		
Temperature sensor								
R ₁₀₀	$T_s = 100^{\circ}C (R_{25} = 5k\Omega)$		4	93±5%		Ω		


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

