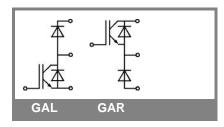
SK70GAL063

SEMITOP® 2

IGBT Module

SK70GAL063 SK70GAR063


Preliminary Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- · High short circuit capability
- Low tail current with low temperature dependence

Typical Applications*

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specifie						
Symbol	Conditions			Values	Units	
IGBT					•	
V _{CES}	T _j = 25 °C T _i = 125 °C			600	V	
I _C	T _j = 125 °C	T _s = 25 °C		81	Α	
		$T_s = 80 ^{\circ}C$		57	Α	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			200	Α	
V_{GES}				± 20	V	
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C		10	μs	
Inverse I	Diode					
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$		22	Α	
		$T_s = 80 ^{\circ}C$		15	Α	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			28	Α	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		100	Α	
Freewhe	eling Diode					
I _F	T _j = 150 °C	T_s = 25 °C		79	Α	
		T_s = 80 °C		53	Α	
I _{FRM}				150	Α	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		720	Α	
Module						
I _{t(RMS)}					Α	
T _{vj}				-40 +150	°C	
T _{stg}				-40 +12 5	°C	
V _{isol}	AC, 1 min.			2500	V	

Characteristics $T_s =$			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1.5 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,3	mA	
		T _j = 125 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 30 V	T _j = 25 °C			300	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		1		V	
		T _j = 125 °C		1,1		V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		11		mΩ	
		T _j = 125°C		9		mΩ	
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V			2,1	2,5	V	
		$T_j = 125^{\circ}C_{chiplev.}$		2	2,3	V	
C _{ies}				4,3		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz				nF	
C _{res}				0,4		nF	
Q_G	V _{GE} = 0 20 V			310		nC	
t _{d(on)}				50		ns	
ι _r	$R_{Gon} = 10 \Omega$	$V_{CC} = 300V$		40		ns	
E _{on}		I _C = 100A		4		mJ	
t _{d(off)}	$R_{Goff} = 10 \Omega$	T _j = 125 °C		300		ns	
t _f		V _{GE} =±15V		35		ns	
E _{off}				3		mJ	
$R_{th(j-s)}$	per IGBT				0,6	K/W	

SK70GAL063

SEMITOP® 2

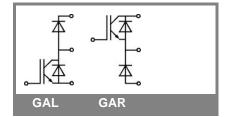
IGBT Module

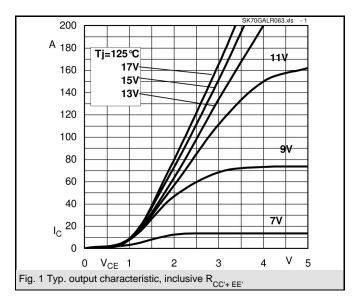
SK70GAL063 SK70GAR063

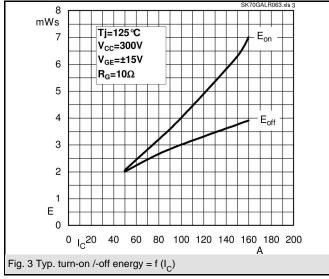
Preliminary Data

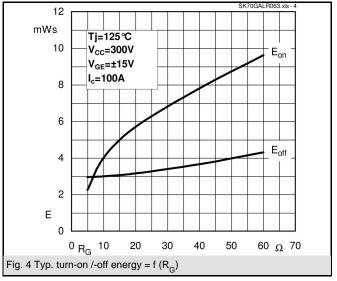
Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- · High short circuit capability
- Low tail current with low temperature dependence

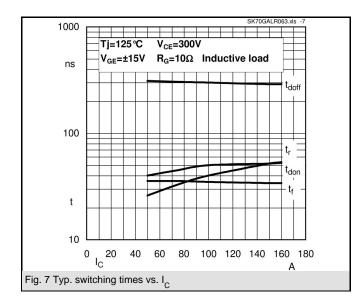

Typical Applications*

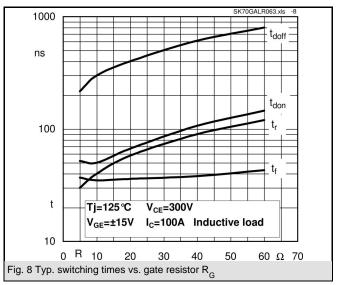

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

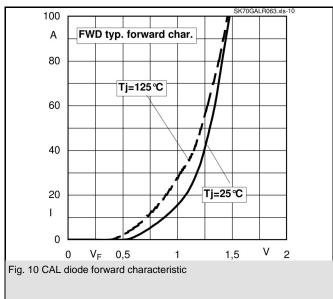

Characteristics								
Symbol	Conditions	1	min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	I_{Fnom} = 10 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev} .		1,45	1,7	V		
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,4	1,7	V		
V_{F0}		T _j = 125 °C		0,85	0,9	V		
r _F		T _j = 125 °C		55	80	mΩ		
I _{RRM}	I _F = 10 A	T _j = 125 °C		6,5		Α		
Q_{rr}	di/dt = -200 A/µs			1		μC		
E _{rr}	V _{CC} = 300V			0,1		mJ		
$R_{\text{th(j-s)D}}$	per diode				2,3	K/W		
Freewheeling Diode								
$V_F = V_{EC}$	$I_{Fnom} = 60 \text{ A}; V_{GE} = 0 \text{ V}$	$T_j = 25 ^{\circ}C_{chiplev.}$		1,4		V		
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,3		V		
V_{F0}		T _j = 125 °C		0,85	0,9	V		
r _F		T _j = 125 °C		6,5	11	V		
I _{RRM}	I _F = 60 A	T _i = 125 °C		90		Α		
Q_{rr}	di/dt = -3000 A/µs	,		7		μC		
E _{rr}	V _R =300V			1,2		mJ		
$R_{th(j-s)FD}$	per diode	_			0,9	K/W		
M _s	to heat sink M1				2	Nm		
w				19		g		

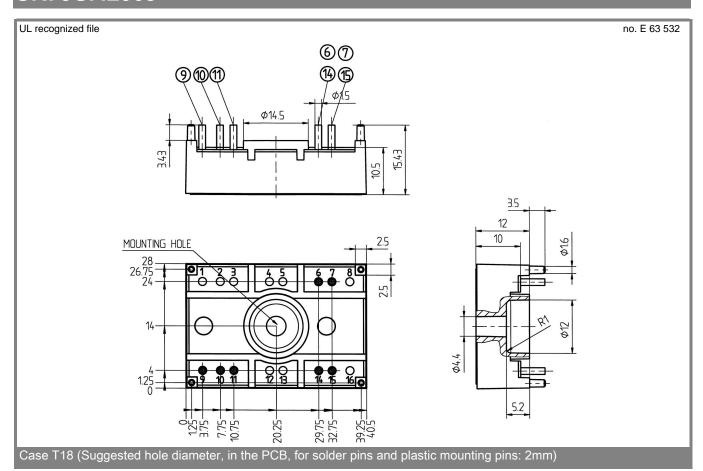

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

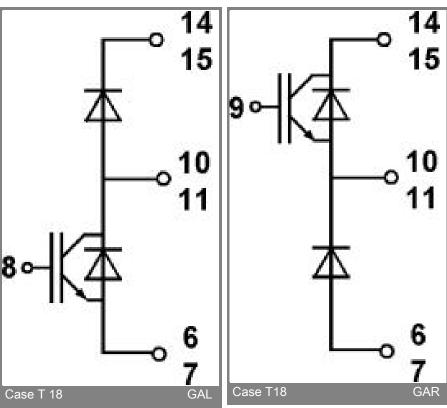

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.










SK70GAL063

