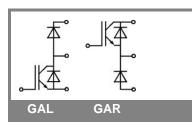


SEMITOP[®] 2

IGBT Module

SK60GAL125 SK60GAR125


Target Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- High short circuit capability
- Ultra Fast NPT IGBT technology
- V_{ce,sat} with positive coefficient

Typical Applications*

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specified						
Symbol	Conditions			Values	Units	
IGBT						
V _{CES}	T _j = 25 °C T _j = 125 °C			1200	V	
I _C	T _j = 125 °C	T _s = 25 °C		51	А	
		T _s = 80 °C		35	А	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			100	А	
V _{GES}				± 20	V	
t _{psc}	$\label{eq:V_CC} \begin{split} V_{CC} &= 300 \text{ V}; $	T _j = 125 °C		10	μs	
Inverse	Diode					
۱ _F	T _j = 150 °C	T _s = 25 °C		43	А	
		T _s = 80 °C		29	A	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}				А	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 25 °C		110	А	
Freewh	eeling Diode					
I _F	T _j = 150 °C	T _s = 25 °C		57	A	
		T _s = 80 °C		38	А	
I _{FRM}					А	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		550	А	
Module						
I _{t(RMS)}					А	
T _{vj}				-40 +150	°C	
T _{stg}				-40 +125	°C	
V _{isol}	AC, 1 min.			2500	V	

Characteristics T _s =			25 $^\circ\text{C},$ unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	V_{GE} = V_{CE} , I_C = 2 mA		4,5	5,5	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,006	mA	
I _{GES}	V_{CE} = 0 V, V_{GE} = 20 V	T _j = 25 °C			300	nA	
V _{CE0}		T _j = 25 °C		1,4	1,9	V	
		T _j = 125 °C		1,7	2,2	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		36		mΩ	
		T _j = 125°C		43		mΩ	
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V			3,2	3,7	V	
		T _j = 125°C _{chiplev.}		3,85		V	
C _{ies}				3,3		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,5		nF	
C _{res}				0,22		nF	
t _{d(on)}						ns	
t,	$R_{Gon} = 33 \Omega$	$V_{CC} = 600V$				ns	
É _{on}	D 00 0	I _C = 45A		8,36		mJ	
t _{d(off)}	R_{Goff} = 33 Ω	$T_{j} = 125 ^{\circ}C$				ns	
t _f		V _{GE} =±15V				ns	
E _{off}				3,32		mJ	
R _{th(j-s)}	per IGBT				0,6	K/W	

SEMITOP[®] 2

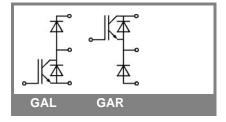
IGBT Module

SK60GAL125 SK60GAR125

Target Data

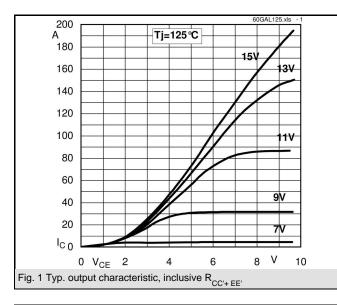
Features

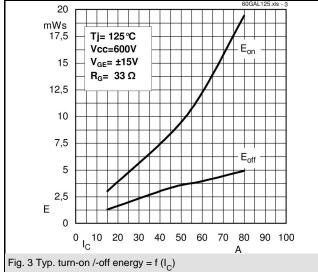
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- High short circuit capability
- Ultra Fast NPT IGBT technology
- V_{ce,sat} with positive coefficient

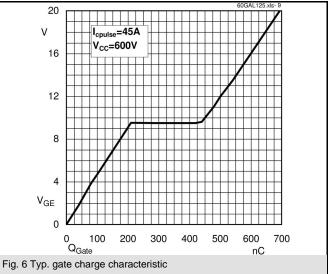

Typical Applications*

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

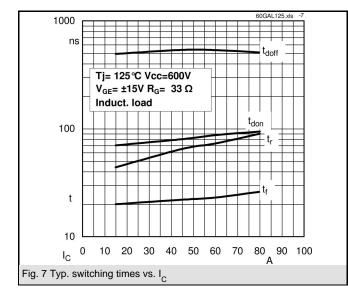
Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D	biode					
$V_F = V_{EC}$	I _{Fnom} = 10 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V
		T _j = 150 °C _{chiplev.}		1,79	2,3	V
V _{F0}		T _j = 25 °C				V
		T _j = 125 °C		1,18		V
r _F		T _j = 25 °C				mΩ
		T _j = 125 °C		31,5		mΩ
I _{RRM}	I _F = 30 A	T _j = 125 °C				А
Q _{rr}	di/dt = -100 A/µs					μC
E _{rr}	V _{CC} = 400V					mJ
R _{th(j-s)D}	per diode				1,16	K/W
	eling Diode					
$V_F = V_{EC}$	I _{Fnom} = 50 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V
		T _j = 125 °C _{chiplev.}		1,8		V
V _{F0}		T _j = 125 °C		1	1,2	V
r _F		T _j = 125 °C		16	22	V
I _{RRM}	I _F = 50 A	T _j = 125 °C				А
Q _{rr}	di/dt = -800 A/µs					μC
Err	V _R =600V					mJ
R _{th(j-s)FD}	per diode				0,9	K/W
M _s	to heat sink				2	Nm
w				19		g

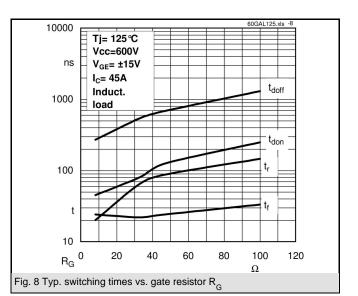

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

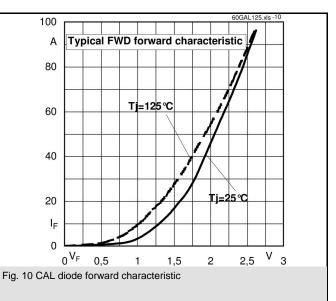

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

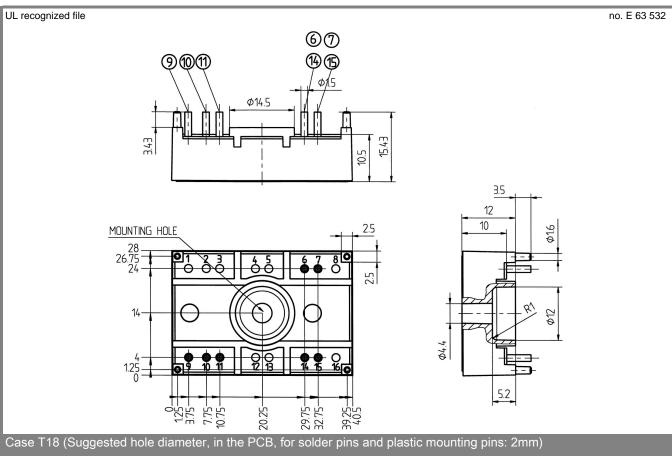

2

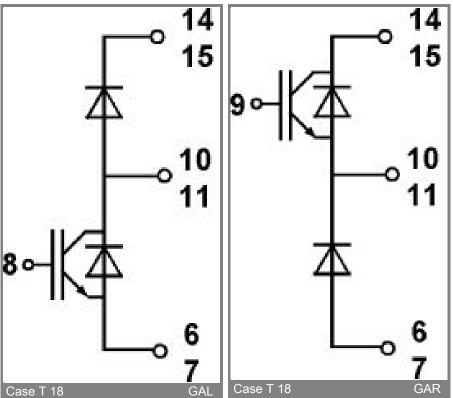
© by SEMIKRON








3



4

5