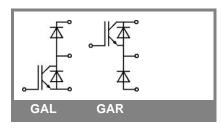
SK60GAL125

SEMITOP® 2

IGBT Module

SK60GAL125 SK60GAR125


Target Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- · High short circuit capability
- Ultra Fast NPT IGBT technology
- V_{ce,sat} with positive coefficient

Typical Applications*

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specific						
Symbol	Conditions			Values	Units	
IGBT						
V_{CES}	T _j = 25 °C T _i = 125 °C			1200	V	
I _C	T _j = 125 °C	T _s = 25 °C		51	Α	
		T _s = 80 °C		35	Α	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			100	Α	
V_{GES}				± 20	٧	
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C		10	μs	
Inverse	Diode					
I _F	T _j = 150 °C	T_s = 25 °C		43	Α	
		T _s = 80 °C		29	Α	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}				Α	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 25 °C		110	Α	
Freewhe	eling Diode					
I _F	T _j = 150 °C	T_s = 25 °C		57	Α	
		T_s = 80 °C		38	Α	
I _{FRM}					Α	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		550	А	
Module						
I _{t(RMS)}					Α	
T _{vj}				-40 + 150	°C	
T _{stg}				-40 + 125	°C	
V _{isol}	AC, 1 min.			2500	V	

Characteristics T _s = 25 °C, unless otherwise specific					pecified	
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 2 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,006	mA
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = 20 \text{ V}$	T _j = 25 °C			300	nA
V_{CE0}		T _j = 25 °C		1,4	1,9	V
		T _j = 125 °C		1,7	2,2	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		36		mΩ
		T _j = 125°C		43		$m\Omega$
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V			3,2	3,7	V
		$T_j = 125^{\circ}C_{chiplev.}$		3,85		V
C _{ies}				3,3		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,5		nF
C _{res}				0,22		nF
t _{d(on)}						ns
t _r	$R_{Gon} = 33 \Omega$	V _{CC} = 600V		0.00		ns
E _{on}	D - 00 0	I _C = 45A		8,36		mJ
t _{d(off)}	R_{Goff} = 33 Ω	T _j = 125 °C				ns
t _f		V _{GE} =±15V				ns
E _{off}				3,32		mJ
$R_{th(j-s)}$	per IGBT				0,6	K/W

SK60GAL125

SEMITOP® 2

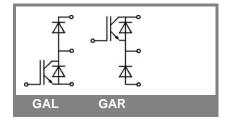
IGBT Module

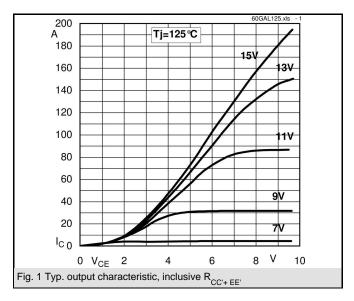
SK60GAL125 SK60GAR125

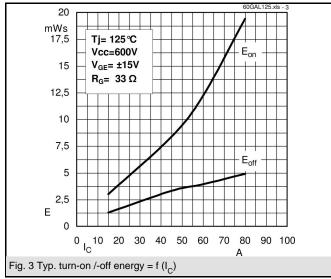
Target Data

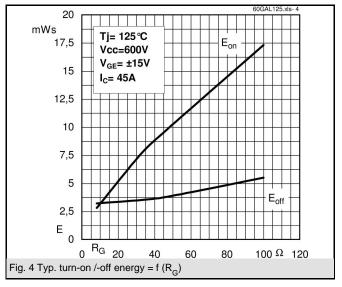
Features

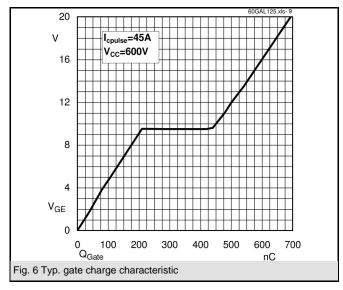
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- · High short circuit capability
- Ultra Fast NPT IGBT technology
- V_{ce.sat} with positive coefficient

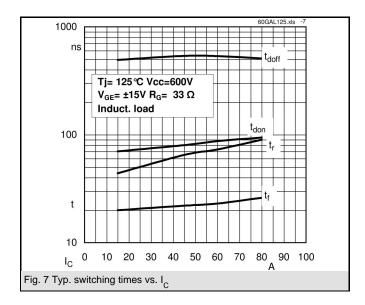

Typical Applications*

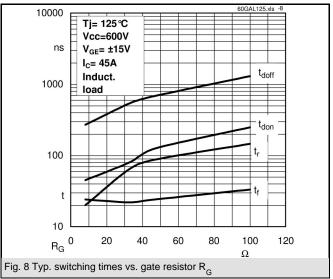

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

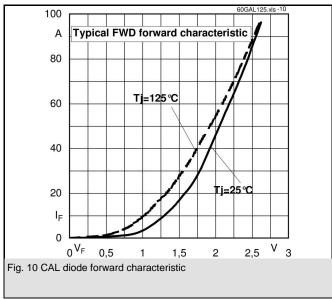

Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	I_{Fnom} = 10 A; V_{GE} = 0 V			2	2,5	V		
		$T_j = 150 ^{\circ}C_{chiplev.}$		1,79	2,3	V		
V_{F0}		T _j = 25 °C				V		
		T _j = 125 °C		1,18		V		
r _F		T _j = 25 °C				mΩ		
		T _j = 125 °C		31,5		mΩ		
I _{RRM}	I _F = 30 A	T _j = 125 °C				Α		
Q_{rr}	di/dt = -100 A/μs					μC		
E _{rr}	V _{CC} = 400V					mJ		
$R_{\text{th(j-s)D}}$	per diode				1,16	K/W		
	Freewheeling Diode							
$V_F = V_{EC}$	$I_{Fnom} = 50 \text{ A}; V_{GE} = 0 \text{ V}$	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2	2,5	V		
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,8		V		
V_{F0}		T _j = 125 °C		1	1,2	V		
r _F		T _j = 125 °C		16	22	V		
I _{RRM}	I _F = 50 A	T _j = 125 °C				Α		
Q_{rr}	di/dt = -800 A/μs					μC		
E _{rr}	V _R =600V					mJ		
$R_{th(j-s)FD}$	per diode				0,9	K/W		
M _s	to heat sink				2	Nm		
w				19		g		

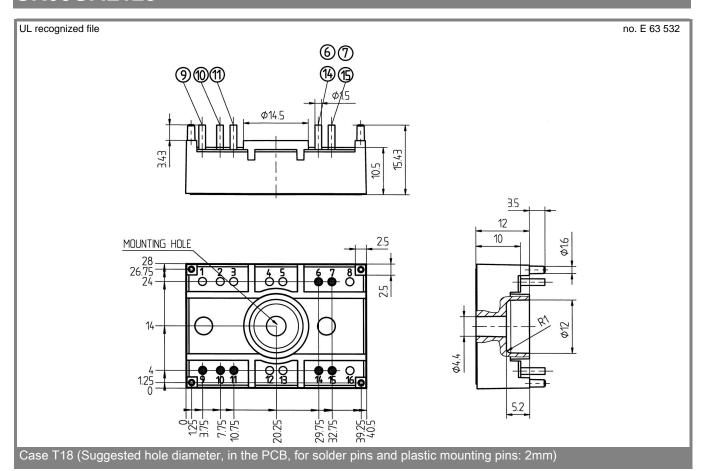

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

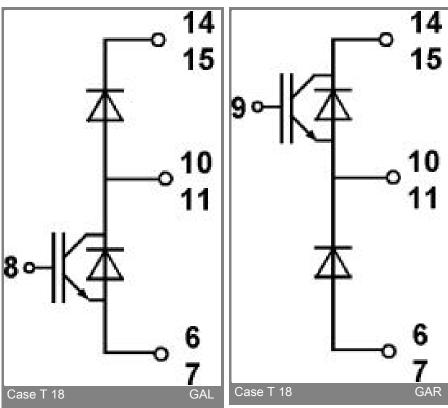

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.










SK60GAL125

