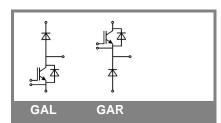
SK60GAL123

IGBT Module

SK60GAL123 SK60GAR123


Preliminary Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- V_{ce,sat} with positive coefficient
 Low tail current with low
- Low tail current with low temperature dependence

Typical Applications*

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified						
Symbol	Conditions		Values	Units		
IGBT			•			
V_{CES}	T _j = 25 °C T _i = 125 °C		1200	V		
I _C	T _j = 125 °C	T _s = 25 °C	58	Α		
		T _s = 80 °C	40	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		100	Α		
V_{GES}			± 20	V		
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs		
Inverse	Diode					
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$	33	Α		
		T _s = 80 °C	23	Α		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	110	Α		
Freewhe	eeling Diode					
I _F	T _j = 150 °C	T_{case} = 25 °C	57	Α		
		T _{case} = 80 °C	38	Α		
I _{FRM}				Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	550	А		
Module						
$I_{t(RMS)}$				Α		
T _{vj}			-40 + 150	°C		
T _{stg}			-40 + 125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics T _s = 25 °C, unless otherwise specifie						ecified
Symbol	Conditions		min.	typ.	max.	Units
IGBT	•					•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,3	mA
		T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 30 V	T _j = 25 °C			300	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		1,2		V
		T _j = 125 °C		1,2		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		26		mΩ
		T _j = 125°C		38		$\text{m}\Omega$
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V			2,5	3	V
		$T_j = 125^{\circ}C_{chiplev.}$		3,1	3,7	V
C _{ies}				3,3		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,5		nF
C _{res}				0,22		nF
Q_G	V _{GE} =0 20 V			285		nC
t _{d(on)}				70		ns
t _r	$R_{Gon} = 22 \Omega$	$V_{CC} = 600V$		90		ns
E _{on}		I _C = 50A		9,9		mJ
t _{d(off)}	$R_{Goff} = 22 \Omega$	T _j = 125 °C		460 30		ns
t _f E _{off}		V _{GE} =±15V		5,3		ns mJ
	non ICDT			<u> </u>	0.6	1
$R_{th(j-s)}$	per IGBT				0,6	K/W

SK60GAL123

SEMITOP® 2

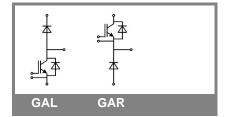
IGBT Module

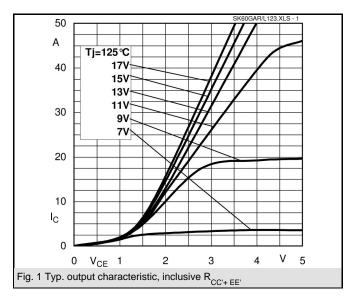
SK60GAL123 SK60GAR123

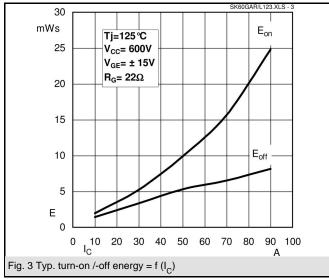
Preliminary Data

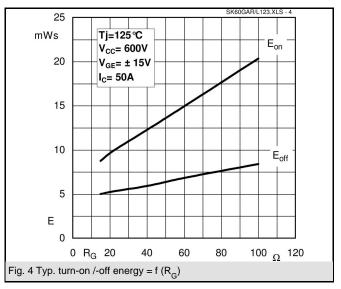
Features

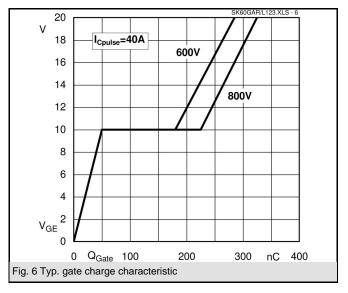
- · Compact design
- · One screw mounting
- · Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- V_{ce,sat} with positive coefficient
 Low tail current with low temperature dependence

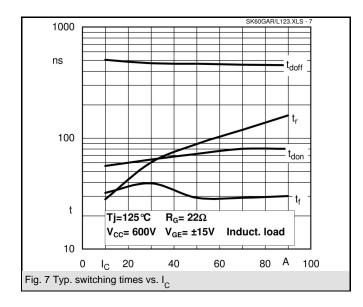

Typical Applications*

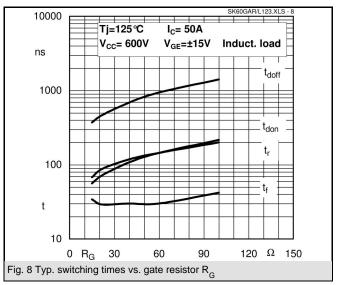

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

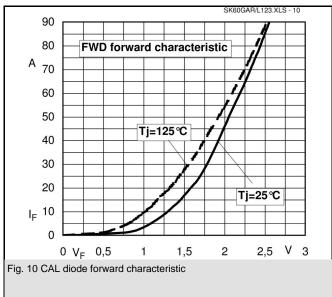

Characteristics								
Symbol	Conditions	İ	min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	$I_{Fnom} = 10 \text{ A}; V_{GE} = 0 \text{ V}$			2	2,5	V		
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,8	2,3	V		
V_{F0}		T _j = 125 °C		1	1,2	V		
r _F		T _j = 125 °C		80		mΩ		
I _{RRM}	I _F = 10 A	T _j = 125 °C		12		Α		
Q_{rr}	di/dt = -300 A/µs			1,8		μC		
E _{rr}	V _{CC} = 600V			0,4		mJ		
$R_{th(j-s)D}$	per diode				2,1	K/W		
Freewhee	Freewheeling Diode							
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev} .		1	2,5	V		
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,8		V		
V_{F0}		T _j = 125 °C		1	1,2	V		
r _F		T _j = 125 °C		18	22	V		
I _{RRM}	I _F = 50 A	T _j = 125 °C		40		Α		
Q_{rr}	di/dt = -800 A/µs	-		8		μC		
E _{rr}	V _R =600V			2,3		mJ		
$R_{th(j-s)FD}$	per diode				0,9	K/W		
M _s	to heat sink M1			•	2	Nm		
w				21		g		

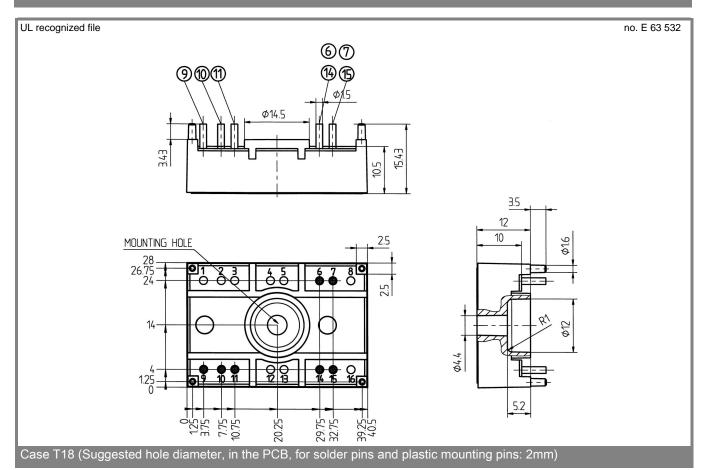

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

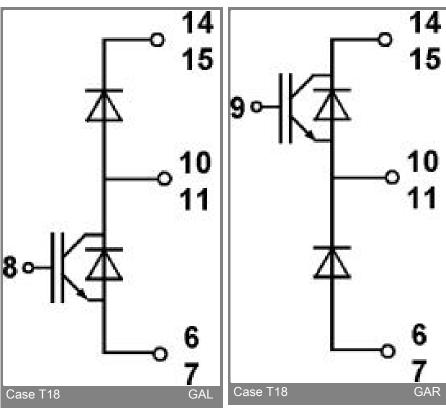

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.










SK60GAL123

