

SEMITOP[®] 3

IGBT Module

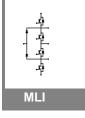
SK50MLI066

Target Data

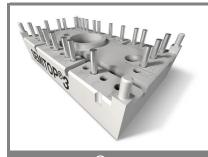
Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD

Typical Applications*


- 3 Level Inverter
- UPS

Remarks


- Visol = 3000V AC, 1s, 50Hz
- Dynamic measure: DUT= IGBT (Gate pin 1) and Neutral Clamp Diode (Kathode pin 16) as free-wheeling diode

Absolute Maximum Ratings			T_s = 25 °C, unless otherwise specified			
Symbol	Conditions		Values	Units		
IGBT						
V _{CES}	T _j = 25 °C T _i = 175 °C		600	V		
I _C	T _j = 175 °C	T _s = 25 °C	60	А		
		T _s = 70 °C	50	А		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		100	А		
V _{GES}			± 20	V		
t _{psc}	V_{CC} = 360 V; $V_{GE} \le$ 20 V; VCES < 600 V	T _j = 150 °C	6	μs		
Inverse	Diode					
۱ _F	T _j = 175 °C	T _s = 25 °C	56	А		
		T _s = 70 °C	44	А		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		100	А		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	320	А		
Freewho	eeling Diode					
I _F	T _j = 175 °C	T _s = 25 °C	56	А		
		T _s = 70 °C	44	А		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		60	А		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	320	А		
Module						
I _{t(RMS)}				А		
T _{vj}			-40 +175	°C		
T _{stg}			-40 +125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics T _s =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 0.8 \text{ mA}$		5	5,8	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,0026	mA	
I _{GES}	V_{CE} = 0 V, V_{GE} = 20 V	T _j = 25 °C			600	nA	
V _{CE0}		T _j = 25 °C		0,9	1,1	V	
		T _j = 150 °C		0,8	1	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		11		mΩ	
		T _j = 150°C		17		mΩ	
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V			1,45		V	
		T _j = 150°C _{chiplev.}		1,65		V	
C _{ies}				3,1		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,2		nF	
C _{res}				0,093		nF	
t _{d(on)}				30		ns	
t,	R _{Gon} = 16 Ω	V _{CC} = 300V		31		ns	
E _{on}		I _C = 50A		1,46		mJ	
t _{d(off)}	R_{Goff} = 16 Ω	T _j = 150 °C		351		ns	
t _f		V _{GE} = -7/+15 V		45		ns	
E _{off}				2,02		mJ	
R _{th(j-s)}	per IGBT			1,11		K/W	

26-02-2009 DIL

SEMITOP[®] 3

IGBT Module

SK50MLI066

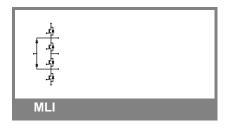
Target Data

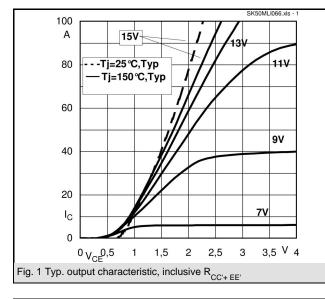
Features

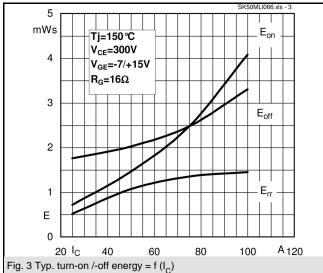
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD

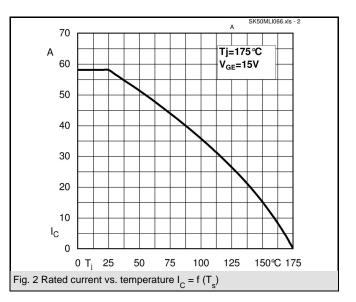
Typical Applications*

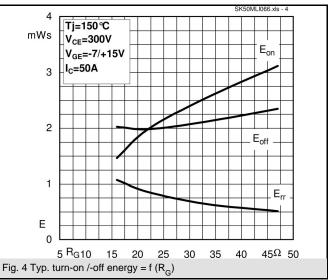
- 3 Level Inverter
- UPS

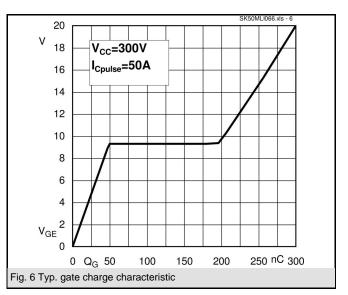

Remarks

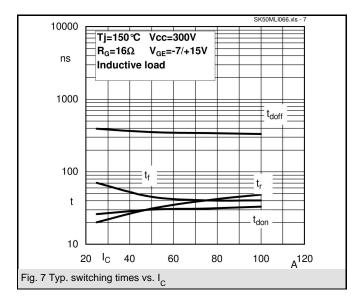

- Visol = 3000V AC, 1s, 50Hz
- Dynamic measure: DUT= IGBT (Gate pin 1) and Neutral Clamp Diode (Kathode pin 16) as free-wheeling diode

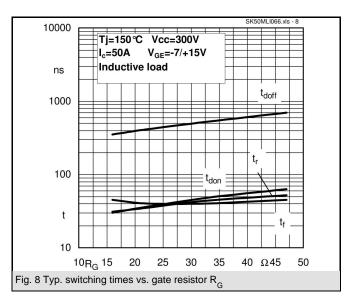

Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
	oiode (Antiparallel Di					
$V_F = V_{EC}$	I _{Fnom} = 50 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,5		V
		T _j = 150 °C _{chiplev.}		1,5		V
V _{F0}		T _j = 25 °C		1		V
1		T _j = 150 °C T _i = 25 °C		0,9		V
r _F		T _j = 25 °C		10		mΩ
		T _j = 150 °C		12		mΩ
I _{RRM} Q _{rr}	I _F = 50 A	T _j = 150 °C T _j = 150 °C				A µC
E _{rr}	V _R = 300V			1,07		mJ
R _{th(j-s)D}	per diode			1,7		K/W
Freewhee	eling Diode (Neutral	Clampo diode)				
$V_F = V_{EC}$	I _{Fnom} = 50 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,5		V
		T _j = 150 °C _{chiplev.}		1,5		V
V _{F0}		T _j = 25 °C		1		V
		T _j = 150 °C		0,9		V
r _F		T _j = 25 °C		10		V
		T _j = 150 °C		12		V
I _{RRM}	I _F = 50 A	T _j = 150 °C		40		А
Q _{rr}	di/dt = -2670 A/µs			2,2		μC
E _{rr}	V _R =300V			1,07		mJ
R _{th(j-s)FD}	per diode			1,7		K/W
M _s	to heat sink		2,25		2,5	Nm
w				30		g

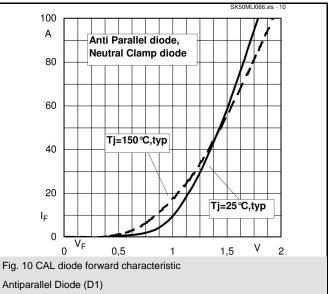

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

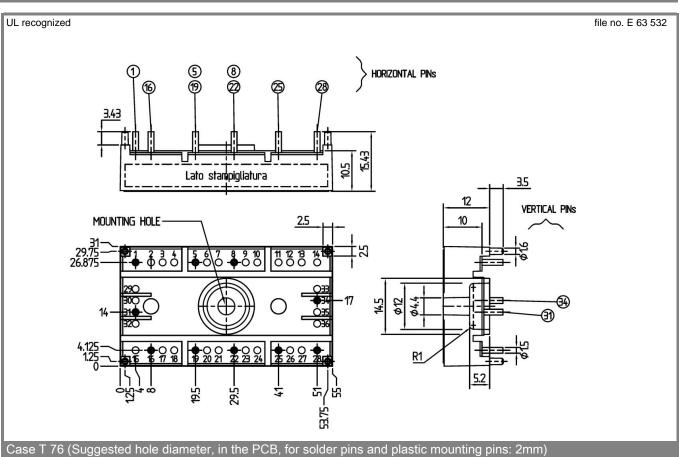

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

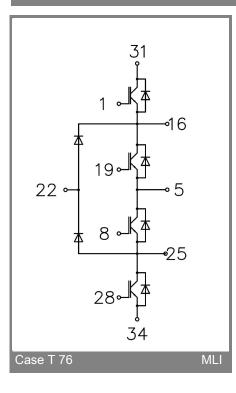









3



© by SEMIKRON

5