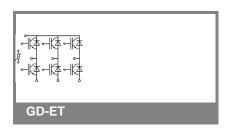


SEMITOP® 3

IGBT Module

SK25GD12T4ET

Target Data


Features

- One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor

Typical Applications*

Remarks

• $V_{CE,sat}$, V_F = chip level value

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified					
Symbol	Conditions		Values	Units	
IGBT					
V_{CES}	T _j = 25 °C		1200	V	
I _C	T _j = 175 °C	T _s = 25 °C	37	Α	
		$T_s = 70 ^{\circ}C$	30	Α	
I _{CRM}	I _{CRM} = 3 x I _{Cnom}		75	Α	
V_{GES}			± 20	V	
t _{psc}	V_{CC} = 800 V; $V_{GE} \le 15$ V; VCES < 1200 V	T _j = 150 °C	10	μs	
Inverse D	iode		·	•	
I _F	T _j = 175 °C	$T_s = 25 ^{\circ}C$	30	Α	
		$T_s = 70 ^{\circ}C$	25	Α	
I _{FRM}	I _{FRM} = 3 x I _{Fnom}		75	Α	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	160	Α	
Module					
$I_{t(RMS)}$				Α	
T _{vj}			-40 + 175	°C	
T _{stg}			-40 +125	°C	
V _{isol}	AC, 1 min.		2500	V	

Characteristics $T_s =$			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}, I_{C} = 0.85 \text{ mA}$		5	5,8	6,5	V	
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$	T _j = 25 °C			0,0024	mA	
		T _j = 125 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			120	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		1,1	1,3	V	
		T _j = 150 °C		1	1,2	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		30		mΩ	
		T _j = 150°C		50		mΩ	
V _{CE(sat)}	I _{Cnom} = 25 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,85	2,05	V	
		T _j = 150°C _{chiplev} .		2,25	2,45	V	
C _{ies}				1,43		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,115		nF	
C _{res}				0,085		nF	
Q_G	V _{GE} =-7V+15V			137,5		nC	
t _{d(on)}				22		ns	
t _r	R_{Gon} = 19 Ω	V _{CC} = 600V		19,5		ns	
E _{on}	di/dt = 2825 A/μs	I _C = 25A		2,27		mJ	
t _{d(off)}	$R_{Goff} = 19 \Omega$	T _j = 150 °C		288		ns	
t _f	di/dt = 2825 A/μs	V _{GE} = -7/+15V		77,5		ns	
E _{off}				2,7		mJ	
$R_{th(j-s)}$	per IGBT			1,31		K/W	

IGBT Module

SK25GD12T4ET

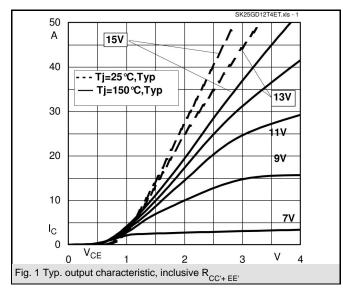
Target Data

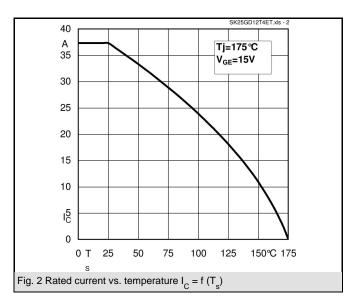
Features

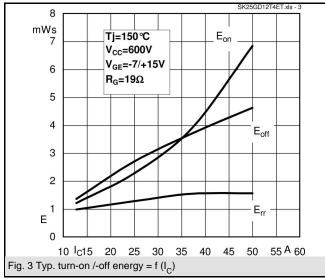
- One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor

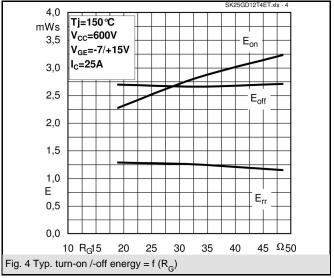
Typical Applications*

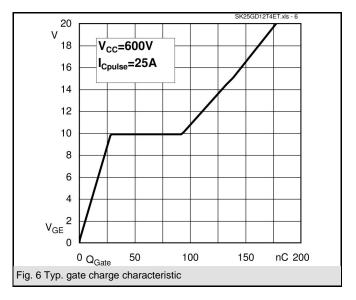
Remarks

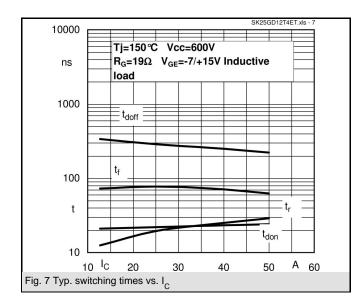

V_{CE.sat} , V_F = chip level value

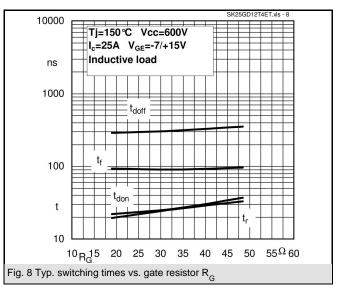

Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse D	iode						
$V_F = V_{EC}$	I_{Fnom} = 25 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2,4	2,62	V	
		$T_j = 150 ^{\circ}C_{chiplev}$		2,45	2,8	V	
V_{F0}		T _j = 25 °C		1,3	1,5	V	
		T _j = 150 °C		0,9	1,1	V	
r _F		T _j = 25 °C		44	45	mΩ	
		T _j = 150 °C		62	68	$\text{m}\Omega$	
I _{RRM}	I _F = 25 A	T _j = 150 °C		31,5		Α	
Q_{rr}	di/dt = 2825 A/µs	•		1,15		μC	
E _{rr}	V _{CC} = 600V			1,28		mJ	
$R_{th(j-s)D}$	per diode			1,91		K/W	
M _s	to heat sink		2,25		2,5	Nm	
w				30		g	
Temperature sensor							
R ₁₀₀	T_s =100°C (R_{25} =5kΩ)			493±5%		Ω	

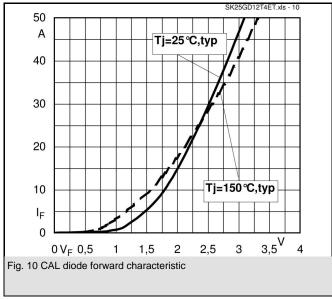

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

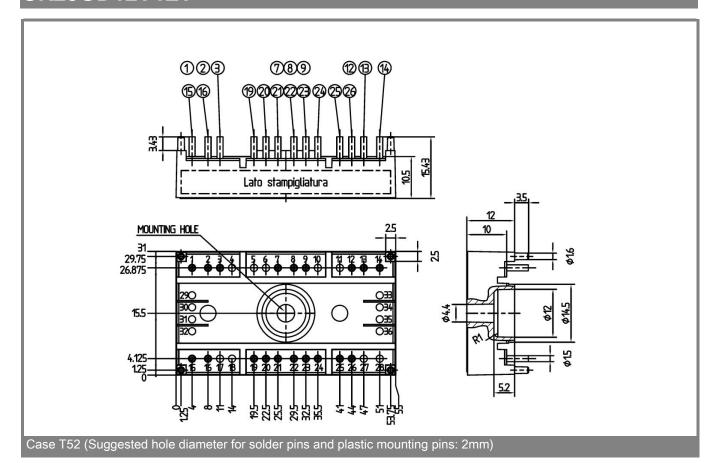

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

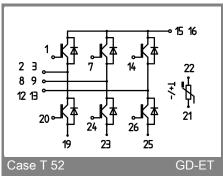












4 27-05-2009 DIL © by SEMIKRON

