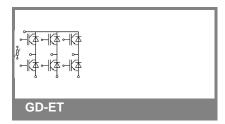


IGBT Module

SK25GD126ET

Preliminary Data

Features


- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- CAL technology FWD
- Integrated NTC temperature sensor

Typical Applications*

Inverter

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified					
Symbol	Conditions			Values	Units
IGBT					
V_{CES}	T _j = 25 °C			1200	V
I _C	T _j = 150 °C	T _s = 25 °C		32	Α
		T_s = 80 °C		23	Α
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			50	А
V_{GES}				± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C		10	μs
Inverse [Diode				
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$		28	Α
		T_s = 80 °C		19	Α
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			50	Α
Module					_
I _{t(RMS)}					Α
T _{vj}				-40 + 150	°C
T _{stg}				-40 + 125	°C
V _{isol}	AC, 1 min.			2500	V

Characteristics $T_s =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1 \text{ mA}$		5	5,8	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,15	mA
		T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			600	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		1	1,2	V
		T _j = 125 °C		0,9		V
r_{CE}	V _{GE} = 15 V	T _j = 25°C		28	36	mΩ
		T _j = 125°C		44		$m\Omega$
V _{CE(sat)}	I _{Cnom} = 25 A, V _{GE} = 15 V			1,7	2,1	V
		$T_j = 125^{\circ}C_{chiplev.}$		2,2		V
C _{ies}				1,8		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,095		nF
C _{res}				0,082		nF
t _{d(on)}				85		ns
Ţ,	$R_{Gon} = 25 \Omega$	V _{CC} = 600V		30		ns
Ė _{on}	D -05.0	I _C = 25A		3,3		mJ
^L d(off)	$R_{Goff} = 25 \Omega$	T _j = 125 °C		430 90		ns
t _f		V _{GE} =±15V				ns
E _{off}				3,1		mJ
$R_{th(j-s)}$	per IGBT				1,2	K/W

IGBT Module

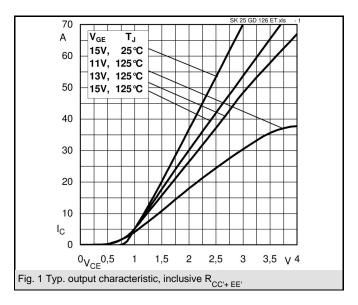
SK25GD126ET

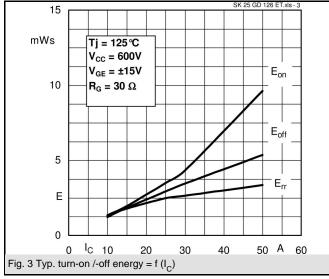
Preliminary Data

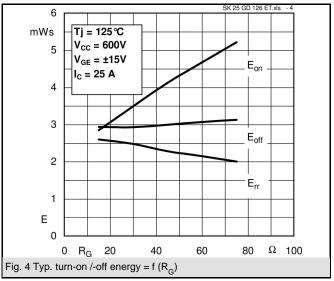
Features

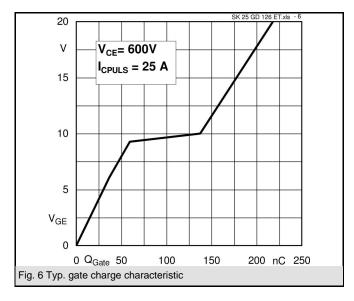
- Compact design
- · One screw mounting
- · Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- CAL technology FWD
- Integrated NTC temperature sensor

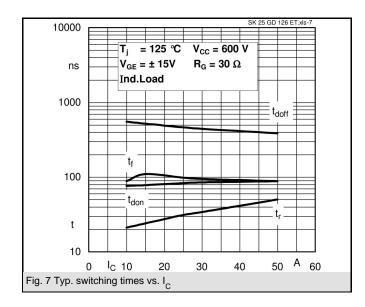
Typical Applications*

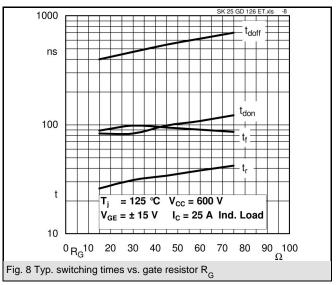

Inverter

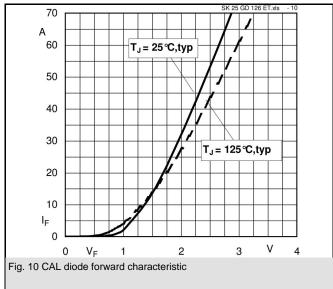

Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse D	iode						
$V_F = V_{EC}$	I_{Fnom} = 25 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,8		V	
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,8		V	
V _{F0}		T _j = 25 °C		1	1,1	V	
		T _j = 125 °C		0,8		V	
r _F		T _j = 25 °C		32	42	mΩ	
		T _j = 125 °C		40		$\text{m}\Omega$	
I _{RRM}	I _F = 25 A	T _j = 125 °C		31		Α	
Q_{rr}	di/dt = -950 A/µs			5		μC	
E _{rr}	V _{CC} = 600V			2,1		mJ	
R _{th(j-s)D}	per diode				1,9	K/W	
M _s	to heat sink		2,25		2,5	Nm	
w				30		g	
Temperat	ure sensor						
R ₁₀₀	$T_s = 100^{\circ}C (R_{25} = 5k\Omega)$			493±5%		Ω	

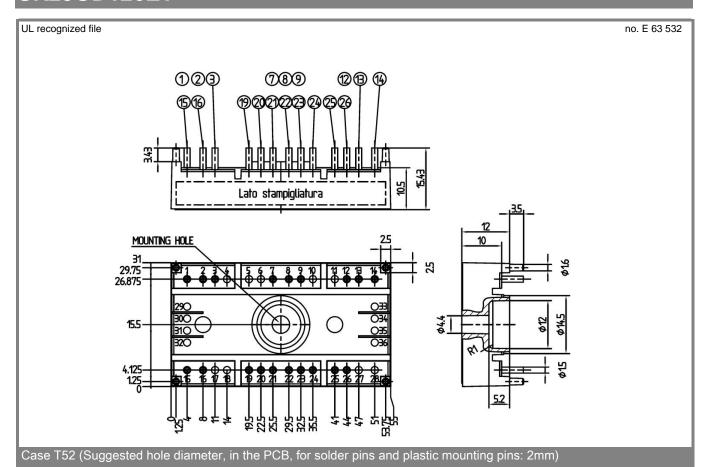

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

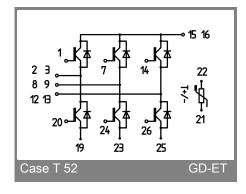

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.











4 21-02-2007 SCT © by SEMIKRON

