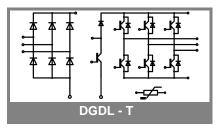


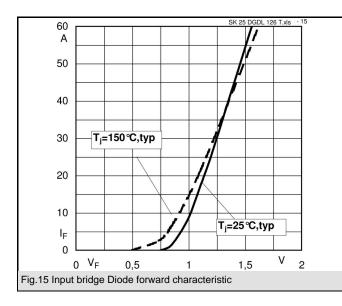
SEMITOP[®]4

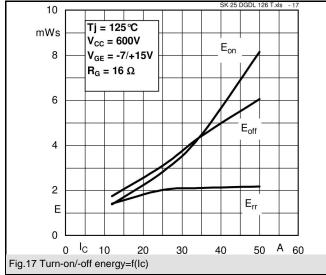
3-phase bridge rectifier + brake chopper + 3-phase bridge inverter **SK 25 DGDL 126 T**

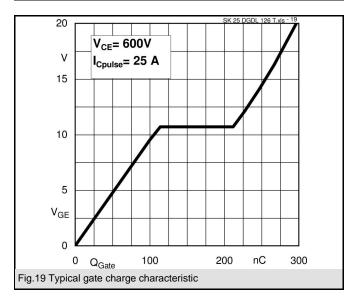

Preliminary Data

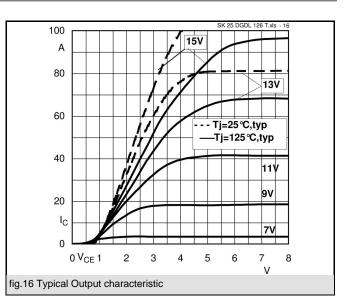
Features

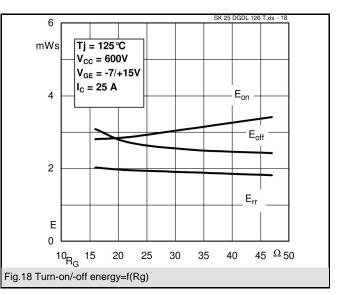
- One screw mounting module
- Fully compatible with SEMITOP[®]1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT technology
- CAL technology free-wheeling diode
- Integrated NTC temperature sensor

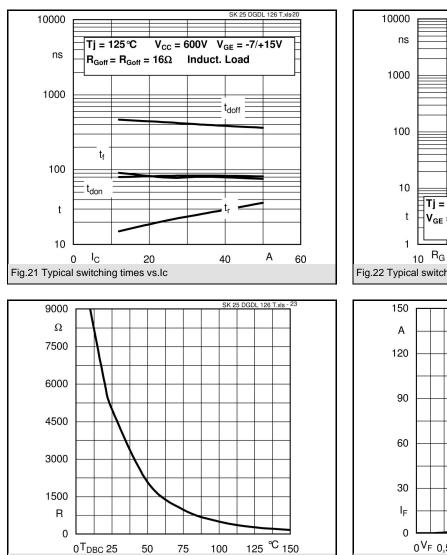

Typical Applications*

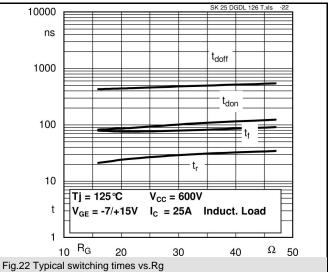

- Inverter up to 16 kVA
- Typ. motor power 7,5 kW
- 1) $V_{CE,sat}$, V_F = chip level value

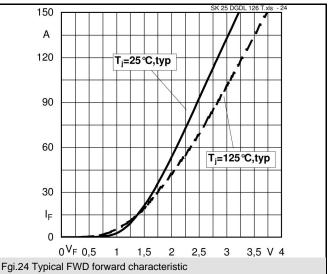


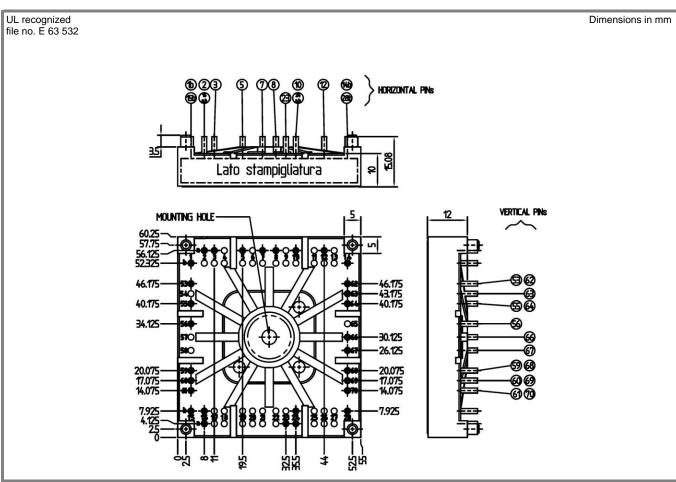

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Absolute	Maximum Ratings	Ts = 25 °C	, unless of	herwise sp	pecified
	Symbol	Conditions		Values		
	IGBT - In	verter,Chopper				
	V _{CES}			1200		V
	I _C	5		41 (31)		А
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I _{CRM}	I_{CRM} = 2 x I_{Cnom} , t_p = 1 ms		50		
	V _{GES}			± 20		V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Тj			-40 +150		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Diode - Ir					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I _F	5		30 (22)		А
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I _{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$		50		А
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Т _ј			-40 +150		°C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rectifier					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{RRM}			1600		V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I _F			35		Α
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I _{FSM} / I _{TSM}					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I ² t	t _p = 10 ms , sin 180 ° ,T _j = 25 °C		680		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tj			-40 +150		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T _{sol}	Terminals, 10 s		260		-
Total Sumplement Characteristics Ts = 25 °C, unless otherwise specified Symbol Conditions min. typ. max. Units IGBT - Inverter N V _{CEsat} I _c = 25 A, T _j = 25 (125) °C 1,7 (2) 2,1 (2,4) V V _{GE(th)} V _{GE} = V _{CE} , I _c = 1 mA 5 5,8 6,5 V V _{GE(th)} V _{GE} = V _{CE} , I _c = 1 mA 5 5,8 6,5 V V _{CE(TO)} T _j = 25 °C (125) °C 1 (0,9) 1,2 (1,1) V C _{res} V _{CE} = 25 V _{GE} = 0 V, f = 1 MHz 0,095 m F C _{res} V _{CE} = 25 V _{GE} = 0 V, f = 1 MHz 0,095 n F C _{res} V _{CE} = 25 V _{GE} = 0 V, f = 1 MHz 0,095 n F R _{th(j-s)} per IGBT 0,082 n F R _{th(j-s)} per IGBT 0,9 K/W t _{d(off)} under following conditions 82 n s t _{d(off)} under following conditions 82 n s	T _{stg}			-40 +125		°C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{isol}	AC, 1 min. / 1 s		2500 / 3000		V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$T_{0} = 25 \circ 0$			
$\begin{array}{ c c c c c c c c c } \hline \textbf{IGBT} & -\textbf{Inverter} \\ \hline \textbf{V}_{CEsat} & _{C} = 25 \text{ A}, T_{j} = 25 (125) \ ^{\circ}\text{C} & 1,7 (2) & 2,1 (2,4) & V \\ \hline \textbf{V}_{GE(th)} & \textbf{V}_{GE} = \textbf{V}_{CE}, \textbf{I}_{C} = 1 \text{ mA} & 5 & 5,8 & 6,5 & V \\ \hline \textbf{V}_{CE(TO)} & T_{j} = 25 \ ^{\circ}\text{C} (125) \ ^{\circ}\text{C} & 1000 & 1,2 (1,1) & V \\ \hline \textbf{T}_{T} & T_{j} = 25 \ ^{\circ}\text{C} (125) \ ^{\circ}\text{C} & 28 (44) & 36 (52) & \text{m}\Omega \\ \hline \textbf{C}_{les} & \textbf{V}_{CE} = 25 \ \textbf{V}_{GE} = 0 \ \textbf{V}, \textbf{f} = 1 \ \textbf{MHz} & 0,095 & \textbf{nF} \\ \hline \textbf{C}_{res} & \textbf{V}_{CE} = 25 \ \textbf{V}_{GE} = 0 \ \textbf{V}, \textbf{f} = 1 \ \textbf{MHz} & 0,082 & \textbf{nF} \\ \hline \textbf{R}_{th(j:s)} & \textbf{per IGBT} & 0,9 & \textbf{K}/W \\ \hline \textbf{k}_{d(on)} & \textbf{under following conditions} & 82 & \textbf{ns} \\ \hline \textbf{k}_{T} & \textbf{V}_{CC} = 600 \ \textbf{V}, \textbf{V}_{GE} = \pm 15 \ \textbf{V} & 21 & \textbf{ns} \\ \hline \textbf{k}_{f} & \textbf{R}_{Gon} = \textbf{R}_{Goff} = 16 \ \Omega & 78 & \textbf{ns} \\ \hline \textbf{k}_{fon} & \textbf{inductive load} & 2,8 & \textbf{mJ} \\ \hline \end{array}$			•			
	•		min.	typ.	max.	Units
$ \begin{array}{c cccc} & V_{GE}(th) & V_{GE} = V_{CE}, \ I_C = 1 \ \text{mA} & 5 & 5,8 & 6,5 & V \\ V_{CE(TO)} & T_j = 25 \ ^{\circ}C \ (125) \ ^{\circ}C & 1 \ (0,9) & 1,2 \ (1,1) & V \\ T_j = 25 \ ^{\circ}C \ (125) \ ^{\circ}C & 28 \ (44) & 36 \ (52) & \text{m}\Omega \\ C_{ies} & V_{CE} = 25 \ V_{GE} = 0 \ V, \ f = 1 \ \text{MHz} & 0,095 & \text{nF} \\ C_{oes} & V_{CE} = 25 \ V_{GE} = 0 \ V, \ f = 1 \ \text{MHz} & 0,082 & \text{nF} \\ C_{res} & V_{CE} = 25 \ V_{GE} = 0 \ V, \ f = 1 \ \text{MHz} & 0,082 & \text{nF} \\ R_{th(j-s)} & \text{per IGBT} & 0,9 & K/W \\ r_{d(on)} & \text{under following conditions} & 82 & \text{ns} \\ r_{T} & V_{CC} = 600 \ V, \ V_{GE} = \pm 15 \ V & 21 & \text{ns} \\ r_{t} & V_{CC} = 600 \ V, \ V_{GE} = \pm 15 \ V & 21 & \text{ns} \\ r_{t} & R_{Gon} = R_{Goff} = 16 \ \Omega & 78 & \text{ns} \\ r_{t} & R_{Gon} = R_{Goff} = 16 \ \Omega & 2,8 & \text{mJ} \end{array} $						1
			_			
$ \begin{array}{cccc} & T_{1} & T_{j} = 25 \ ^{\circ}\text{C} \ (125) \ ^{\circ}\text{C} & 28 \ (44) & 36 \ (52) & \text{m}\Omega \\ \\ C_{\text{ies}} & V_{\text{CE}} = 25 \ V_{\text{GE}} = 0 \ \text{V}, \ \text{f} = 1 \ \text{MHz} & 1,8 & \text{nF} \\ \\ C_{\text{oes}} & V_{\text{CE}} = 25 \ V_{\text{GE}} = 0 \ \text{V}, \ \text{f} = 1 \ \text{MHz} & 0,095 & \text{nF} \\ \\ C_{\text{res}} & V_{\text{CE}} = 25 \ V_{\text{GE}} = 0 \ \text{V}, \ \text{f} = 1 \ \text{MHz} & 0,082 & \text{nF} \\ \\ R_{\text{th}(j-s)} & \text{per IGBT} & 0,9 & \text{K/W} \\ \\ \hline P_{\text{d}(\text{on})} & \text{under following conditions} & 82 & \text{ns} \\ \\ F_{\text{t}} & V_{\text{CC}} = 600 \ \text{V}, \ V_{\text{GE}} = \pm 15 \ \text{V} & 21 & \text{ns} \\ \\ F_{\text{d}(\text{off})} & I_{\text{C}} = 25 \ \text{A}, \ T_{j} = 125 \ ^{\circ}\text{C} & 426 & \text{ns} \\ \\ F_{\text{d}} & R_{\text{Gon}} = R_{\text{Goff}} = 16 \ \Omega & 78 & \text{ns} \\ \\ F_{\text{on}} & \text{inductive load} & 2,8 & \text{mJ} \end{array} $			5			
$ \begin{array}{lll} \hline C_{ies} & V_{CE}' = 25 \ V_{GE} = 0 \ V, \ f = 1 \ MHz & 1,8 & nF \\ \hline C_{oes} & V_{CE} = 25 \ V_{GE} = 0 \ V, \ f = 1 \ MHz & 0,095 & nF \\ \hline V_{CE} = 25 \ V_{GE} = 0 \ V, \ f = 1 \ MHz & 0,082 & nF \\ \hline V_{CE} = 25 \ V_{GE} = 0 \ V, \ f = 1 \ MHz & 0,082 & nF \\ \hline R_{th(j\cdots)} & per \ IGBT & 0,9 & K/W \\ \hline P_{d}(on) & under \ following \ conditions & 82 & ns \\ \hline r_{r} & V_{CC} = 600 \ V, \ V_{GE} = \pm 15 \ V & 21 & ns \\ \hline r_{d}(off) & I_{C} = 25 \ A, \ T_{j} = 125 \ ^{\circ}C & 426 & ns \\ \hline r_{f} & R_{Gon} = R_{Goff} = 16 \ \Omega & 78 & ns \\ \hline r_{eon} & inductive \ load & 2,8 & mJ \\ \end{array} $						
$\begin{array}{c c} C_{oes} & V_{CE} = 25 \ V_{GE} = 0 \ V, \ f = 1 \ MHz & 0,095 & nF \\ C_{res} & V_{CE} = 25 \ V_{GE} = 0 \ V, \ f = 1 \ MHz & 0,082 & nF \\ \hline V_{CE} = 25 \ V_{GE} = 0 \ V, \ f = 1 \ MHz & 0,082 & nF \\ \hline Per \ IGBT & 0,9 & K/W \\ \hline t_{d(on)} & under \ following \ conditions & 82 & ns \\ \hline t_{r} & V_{CC} = 600 \ V, \ V_{GE} = \pm 15 \ V & 21 & ns \\ \hline t_{d(off)} & I_{C} = 25 \ A, \ T_{j} = 125 \ ^{\circ}C & 426 & ns \\ \hline t_{r} & R_{Gon} = R_{Goff} = 16 \ \Omega & 78 & ns \\ \hline t_{eon} & inductive \ load & 2,8 & mJ \end{array}$					30 (52)	
		$V_{CE} = 25 V_{GE} = 0 V, T = T MHz$				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C _{oes}					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
						-
						-
E _{on} inductive load 2,8 mJ						
E _{off} 3,1 mJ	E _{off}					_


└on	inductive load	2,0		1110					
E _{off}		3,1		mJ					
Diode - Inverter, Chopper									
$V_F = V_{EC}$	I _F = 20 A, T _i = 25(125) °C	1,5 (1,55) 1,65 (1,7)	V					
V _(TO)	T _i = 25 °C (125) °C	1,15 (1,1) 1,25 (1,2)	V					
r _T	T _j = 25 °C (125) °C	17,5 (22,5	5) 20 (25)	mΩ					
R _{th(j-s)}	per diode	1,7		K/W					
I _{RRM}	under following conditions	25		Α					
Q _{rr}	I _F = 25 A, V _R = 300 V	5		μC					
E _{rr}	V _{GE} = 0 V, T _j = 125 °C	2		mJ					
	di _{F/dt} = 2100 A/µs								
Diode - Rectifier									
V _F	I _F = 25 A, T _i = 25() °C	1,1		V					
V _(TO)	T _i = 150 °C	0,8		V					
r _T	T _j = 150 °C	13		mΩ					
R _{th(j-s)}	per diode	1,5		K/W					
Temperatur sensor									
R _{ts}	5 %, T _r = 25 (100) °C	5000(493	3)	Ω					
Mechanical data									
w		60		g					
Ms	Mounting torque	2,5	2,75	Nm					

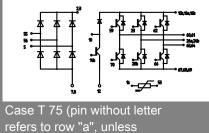



50


75


100

0T_{DBC} 25


Fig.23 Typical NTC characteristic

Case T 75 (Suggested hole diameter for the solder pins in the circuit board: 2mm. Suggested hole diameter for the mounting pins in the circuit board: 3,6mm)

refers to row "a", unless otherwise specified)

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.