

IGBT Module

SK150MLI066T

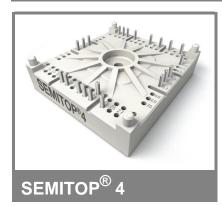
Preliminary Data

Features

- · Compact design
- One screw mounting
- · Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- · CAL technology FWD
- Integrated NTC temperature sensor

Typical Applications*

Multi level inverter


Remarks

- V_{isol} = 3000V AC,1s,50Hz
 Dynamic measure: DUT = IGBT (Gate pin 55) and Neutral Clamp Diode (Kathode pin 56) as free-wheeling diode

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified						
Symbol	Conditions		1	Values	Units	
IGBT					•	
V_{CES}	T _j = 25 °C			600	V	
I _C	T _j = 175 °C	T _s = 25 °C		151	Α	
		$T_s = 70 ^{\circ}C$		120	Α	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			300	Α	
V_{GES}				± 20	V	
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 20$ V; VCES < 600 V	T _j = 125 °C		6	μs	
Inverse D						
I _F	T _j = 175 °C	$T_s = 25 ^{\circ}C$		115	Α	
		T _s = 70 °C		90	Α	
I_{FRM}	I _{FRM} = 2 x I _{Fnom}			300	Α	
Freewhee	ling Diode					
I _F	T _j = 175 °C	$T_s = 25 ^{\circ}C$		115	Α	
		$T_s = 70 ^{\circ}C$		90	Α	
I_{FRM}				300	Α	
Module					,	
I _{t(RMS)}					Α	
T_{vj}				-40 + 175	°C	
T _{stg}				-40 + 125	°C	
V_{isol}	AC, 1 min.			2500	V	

Characteristics T _s = 25 °C, unless otherwise spec						ecified
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		5	5,8	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,0076	mA
		T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			1200	nA
V _{CE0}		T _j = 25 °C		0,8	1,1	V
		T _j = 150 °C		0,7	1	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		4	5	mΩ
		T _j = 150°C		6,5	7	$m\Omega$
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V			1,45	1,85	V
		$T_j = 150^{\circ}C_{chiplev.}$		1,65	2,05	V
C _{ies}				9,4		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,6		nF
C _{res}				0,29		nF
Q_G	V _{GE} =-7V+15V			1350		nC
R _{Gint}	T _j = 150 °C			2		Ω
t _{d(on)}				100		ns
t _r	$R_{Gon} = 4 \Omega$	$V_{CC} = 300V$		54		ns
E _{on}	di/dt = 4100 A/μs	I _C = 150A		2,7		mJ
t _{d(off)}	$R_{Goff} = 4 \Omega$	T _j = 150 °C		450		ns
t _f E _{off}	di/dt = 4100 A/μs	V _{GE} =-7/+15V		65 5,9		ns mJ
R _{th(j-s)}	per IGBT			0,55		K/W

IGBT Module

SK150MLI066T

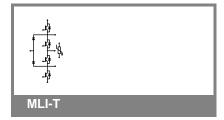
Preliminary Data

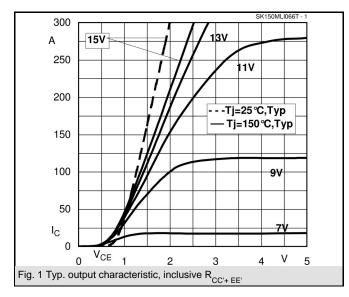
Features

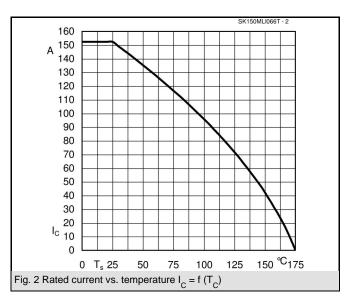
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- · CAL technology FWD
- Integrated NTC temperature sensor

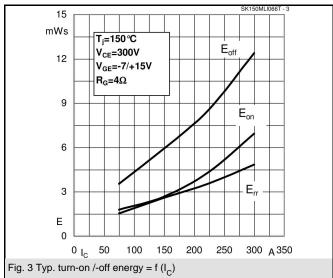
Typical Applications*

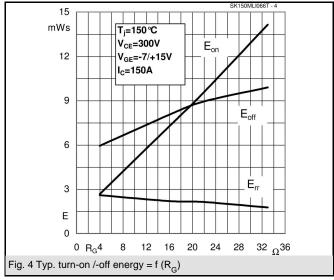
Multi level inverter

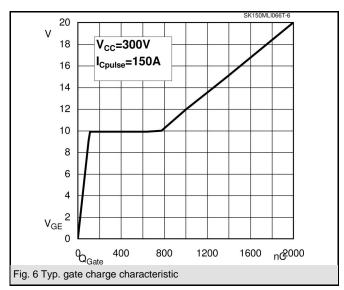

Remarks

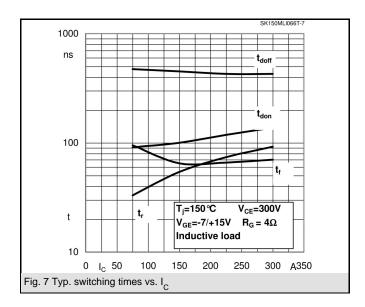

- V_{isol} = 3000V AC,1s,50Hz
- Dynamic measure: DUT = IGBT (Gate pin 55) and Neutral Clamp Diode (Kathode pin 56) as free-wheeling diode

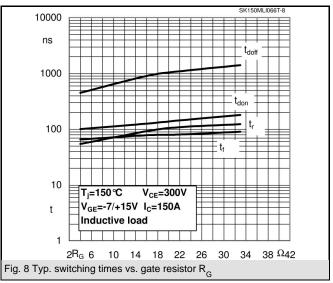

Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D						
$V_F = V_{EC}$	I _{Fnom} = 150 A; V _{GE} = 0 V			1,5	1,7	V
		$T_j = 150 ^{\circ}\text{C}_{\text{chiplev.}}$ $T_j = 25 ^{\circ}\text{C}$		1,5	1,7	V
V_{F0}		T _j = 25 °C		1	1,1	V
		$T_j = 150 ^{\circ}\text{C}$ $T_j = 25 ^{\circ}\text{C}$		0,9	1	V
r _F		T _j = 25 °C		3,5	4	mΩ
		T _j = 150 °C T _i = 150 °C		4	4,7	mΩ
I _{RRM}	I _F = 150 A	T _j = 150 °C		130		Α
Q_{rr}	di/dt = 4100 A/μs			8		μC
E _{rr}	V _R = 300V			2,6		mJ
$R_{\text{th(j-s)D}}$	per diode			0,72		K/W
	eling Diode (Neutral C	Clamp Diode)				
$V_F = V_{EC}$	I_{Fnom} = 150 A; V_{GE} = 0 V			1,5	1,7	V
		$T_j = 150 ^{\circ}\text{C}_{\text{chiplev.}}$ $T_j = 25 ^{\circ}\text{C}$		1,5	1,7	V
V _{F0}		T _j = 25 °C		1	1,1	V
		T _j = 150 °C		0,9	1	V
r _F		T _j = 25 °C		3,5	4	V
		T _j = 150 °C		4	4,7	V
I _{RRM}	I _F = 150 A	$T_j = 150 ^{\circ}\text{C}$ $T_j = 150 ^{\circ}\text{C}$		120		Α
Q_{rr}	di/dt = 3100 A/µs			8		μC
E _{rr}	V _R =300V			2,4		mJ
$R_{\text{th(j-s)FD}}$	per diode			0,72		K/W
M _s	to heat sink		2,5		2,75	Nm
w				60		g
Tempera	ture sensor					
R ₁₀₀	T_s =100°C (R_{25} =5kΩ)			493±5%		Ω

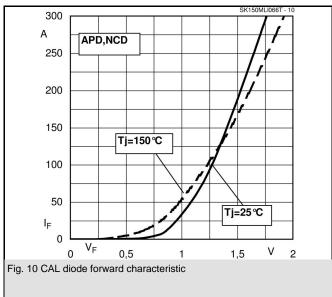

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

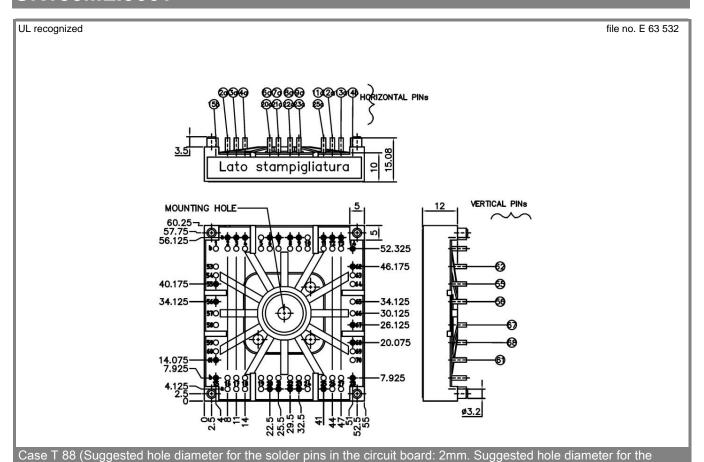

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.











2a,3a,4a 55,7 61,7 6a,7a,8a,9a 22a, 23a 68,7 62,7 62,7 11a,12a,13a,14b Case T 88 MLI-T

mounting pins in the circuit board: 3,6mm)