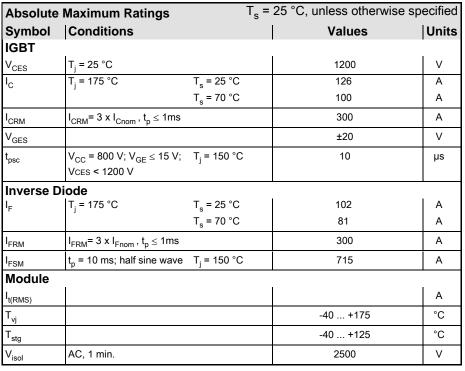
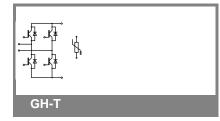


IGBT module

SK100GH12T4T


Target Data

Features


- · One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- New IGBT4 Technology
- · CAL 4 technology FWD
- Integrated NTC Temperature sensor

Typical Applications*

Voltage regulator

Characteristics T _c =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 3.4 \text{ mA}$		5	5,8	6,5	V	
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,02	mA	
		T _j = 125 °C		0,4		mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 125 °C			1200	nA	
V _{CE0}		T _j = 25 °C		0,8	0,9	V	
		T _j = 150 °C		0,7	0,8	V	
r_{CE}	V _{GE} = 15 V	T _j = 25°C		10		mΩ	
		T _j = 150°C		15		mΩ	
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V	$T_j = 25^{\circ}C_{chiplev.}$		1,8	2	V	
		$T_j = 150^{\circ}C_{chiplev.}$		2,2	2,4	V	
C _{ies}				5,54		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,41		nF	
C _{res}				0,32		nF	
Q_G	V _{GE} =-7V+15V			750		nC	
R_Gint	T _j = 25 °C			2		Ω	
$t_{d(on)}$				63		ns	
t _r	$R_{Gon} = 16 \Omega$	V _{CC} = 600V		65		ns	
Ė _{on}	di/dt = 1800 A/μs	I _C = 100A		16,6		mJ	
t _{d(off)}	$R_{Goff} = 16 \Omega$	T _j = 150 °C		521 80		ns	
t _f ⊏	di/dt = 1800 A/μs			10		ns mJ	
E _{off}	LODT						
$R_{th(j-s)}$	per IGBT			0,43		K/W	

IGBT module

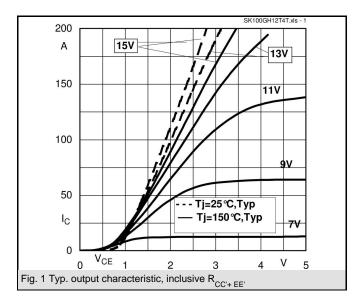
SK100GH12T4T

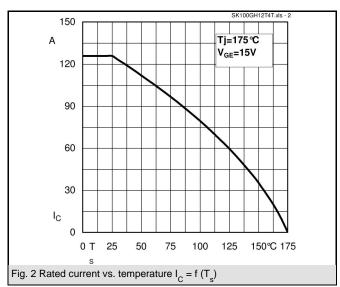
Target Data

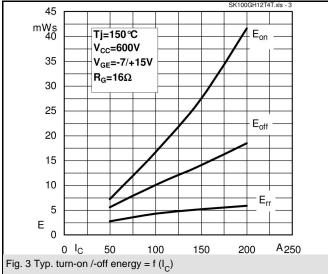
Features

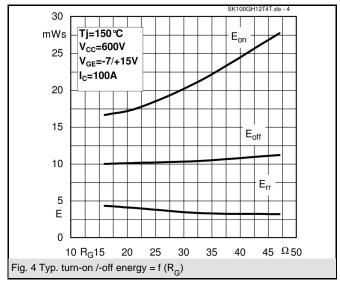
- · One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- New IGBT4 Technology
- CAL 4 technology FWD
- Integrated NTC Temperature sensor

Typical Applications*


Voltage regulator


Characteristics										
Symbol	Conditions	İ	min.	typ.	max.	Units				
Inverse Diode										
$V_F = V_{EC}$	I _{Fnom} = 100 A; V _{GE} = 0 V	$T_j = 25 ^{\circ}C_{chiplev.}$		2,2	2,5	V				
		T _j = 150 °C _{chiplev} .		2,1	2,45	V				
V_{F0}		T _j = 25 °C		1,3	1,5	V				
		T _j = 150 °C		0,9	1,1	V				
r_F		T _j = 25 °C		9,5	10,5	mΩ				
		T _j = 150 °C		13	14	mΩ				
I _{RRM}	I _F = 100 A	T _j = 150 °C		52		Α				
Q_{rr}	di/dt = 1800 A/µs			14		μC				
E _{rr}	V _{CC} =600V			5,2		mJ				
$R_{th(j-s)D}$	per diode			0,62		K/W				
Freewheeling Diode										
$V_F = V_{EC}$	I _{Fnom} = A; V _{GE} = V	$T_j = {^{\circ}C_{chiplev.}}$				V				
V_{F0}		$T_{j} = {^{\circ}C}$ $T_{j} = {^{\circ}C}$ $T_{j} = {^{\circ}C}$				V				
r _F		T _j = °C				V				
I _{RRM}	I _F = A	T _j = °C				Α				
Q_{rr}						μC				
E _{rr}						mJ				
	per diode					K/W				
M _s	to heat sink		2,5		2,75	Nm				
w				60		g				
	ture sensor									
R ₁₀₀	T_s = 100°C (R_{25} =5kΩ)			493±5%		Ω				


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

