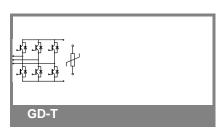


IGBT Module

SK100GD12T4T

Target Data


Features

- One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor

Typical Applications*

Remarks

• $V_{CE,sat}$, V_F = chip level value

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified					
Symbol	Conditions		1	Values	Units
IGBT	•				
V_{CES}	T _j = 25 °C			1200	V
I _C	T _j = 175 °C	T _s = 25 °C		126	Α
		$T_s = 70 ^{\circ}C$		100	Α
I _{CRM}	I _{CRM} = 3 x I _{Cnom}			300	Α
V_{GES}				± 20	V
t _{psc}	V_{CC} = 800 V; $V_{GE} \le 15$ V; $V_{CES} < 1200$ V	T _j = 150 °C		10	μs
Inverse D	Diode				
I _F	1 1	$T_s = 25 ^{\circ}C$		102	Α
		$T_s = 70 ^{\circ}C$		81	Α
I _{FRM}	I _{FRM} = 3 x I _{Fnom}			300	Α
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		548	Α
Module					
$I_{t(RMS)}$					Α
T _{vj}		•		-40 + 175	°C
T _{stg}				-40 +125	°C
V _{isol}	AC, 1 min.			2500	V

Characteristics T _s = 25 °C, unless otherwise					erwise sp	ecified
Symbol	Conditions		min.	typ.	max.	Units
IGBT						•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 3.4 \text{ mA}$		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$	T _j = 25 °C			0,02	mA
	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V				1200	nA
		$T_j = 125 ^{\circ}\text{C}$ $T_i = 25 ^{\circ}\text{C}$				nA
V _{CE0}		T _j = 25 °C		1,1	1,3	V
		T _j = 150 °C		1	1,2	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		7,5		mΩ
		T _j = 150°C		12,5		$m\Omega$
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V			1,85	2,05	V
		$T_j = 150^{\circ}C_{chiplev.}$		2,25	2,45	V
C _{ies}				5,54		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,41		nF
C _{res}				0,32		nF
Q_G	V _{GE} = -7V+15V			750		nC
R_{Gint}	T _j = 25 °C			2		Ω
t _{d(on)}				63		ns
t _r	$R_{Gon} = 16 \Omega$	V _{CC} = 600V		65		ns
E _{on}	di/dt = 1800 A/µs	I _C = 100A		16,6		mJ
${rac{t_{d(off)}}{t_f}}$	$R_{Goff} = 16 \Omega$ di/dt = 1800 A/µs	T _j = 150 °C V _{GE} = ±15 V		521 80		ns ns
۲ E _{off}	- 1000 / Vpo	GE TIO		10		mJ
R _{th(j-s)}	per IGBT	1		0,43		K/W

IGBT Module

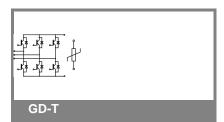
SK100GD12T4T

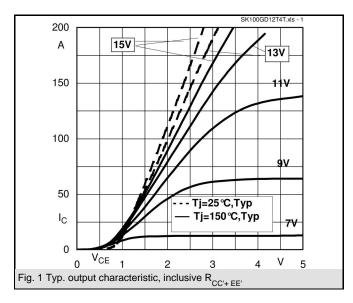
Target Data

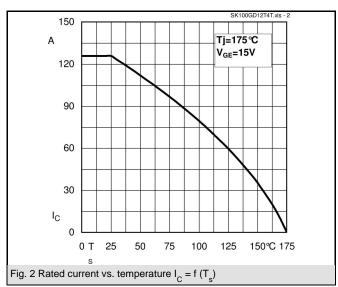
Features

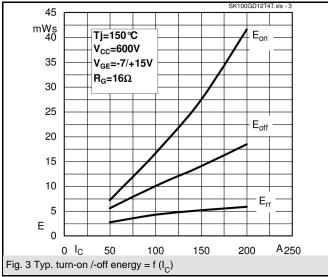
- · One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor

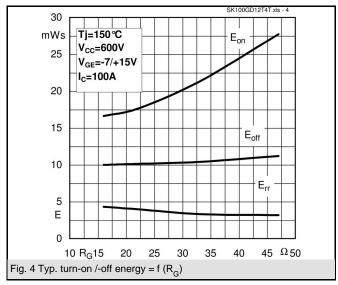
Typical Applications*

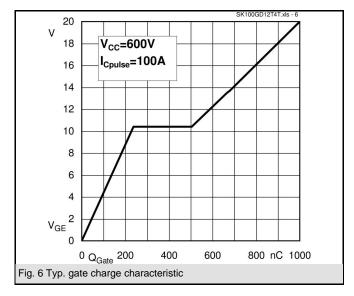

Remarks

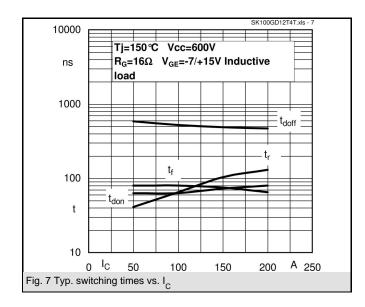

• V_{CE,sat} , V_F = chip level value

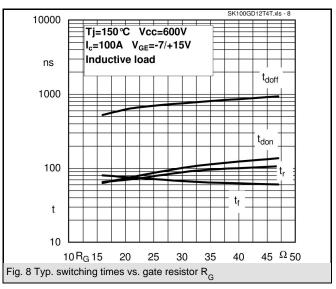

Characteristics							
Symbol	Conditions	İ	min.	typ.	max.	Units	
Inverse D	iode						
$V_F = V_{EC}$	I _{Fnom} = 100 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2,25	2,55	V	
		T _j = 150 °C _{chiplev.}		2,2	2,5	V	
V_{F0}		T _j = 25 °C		1,3	1,5	V	
		T _j = 150 °C		0,9	1,1	V	
r _F		T _j = 25 °C		9,5	10,5	mΩ	
		T _j = 150 °C		13	14	$m\Omega$	
I _{RRM}	I _F = 100 A	T _j = 150 °C		52		Α	
Q_{rr}	di/dt = 1800 A/μs			14		μC	
E _{rr}	V _{CC} = 600V			5,2		mJ	
$R_{\text{th(j-s)D}}$	per diode			0,62		K/W	
M_s	to heat sink		2,5		2,75	Nm	
w				60		g	
Temperature sensor							
R ₁₀₀	T_s =100°C (R_{25} =5kΩ)			493±5%		Ω	

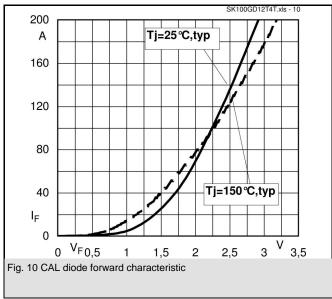

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

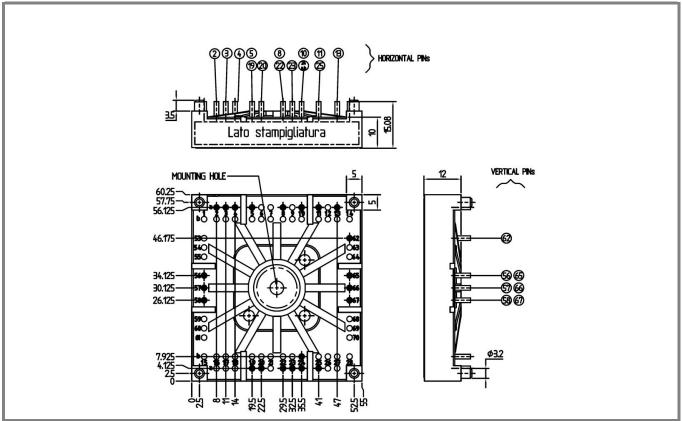

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

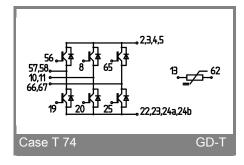












4 27-04-2009 DIL © by SEMIKRON

Case T74 (Suggested hole diameter for the solder pins in the circuit board: 2mm. Suggested hole diameter for the mounting pins in the circuit board: 3,6mm)

