

SEMITOP[®] 3

IGBT Module

SK100GB12T4 T

Target Data

Features

- One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor

Typical Applications*

Remarks

• V_{CE,sat} , V_F = chip level value

 $T_s = 25$ °C, unless otherwise specified **Absolute Maximum Ratings** Symbol Conditions Values Units IGBT V_{CES} T_i = 25 °C 1200 V T_j = 175 °C T_s = 25 °C 100 А I_{C} T_s = 70 °C 80 А 300 А I_{CRM}= 3 x I_{Cnom} I_{CRM} ± 20 V V_{GES} $V_{CC} = 800 \text{ V}; \text{ } V_{GE} \leq 15 \text{ V}; \quad \text{ } T_{j} = 150 \text{ }^{\circ}\text{C}$ 10 μs t_{psc} VCES < 1200 V Inverse Diode T_i = 175 °C T_s = 25 °C 85 А I_F T_s = 70 °C 65 А I_{FRM} = 3 x I_{Fnom} 300 А I_{FRM} $t_p = 10 \text{ ms}$; half sine wave $T_i = 150 \text{ °C}$ 715 А I_{FSM} Module А I_{t(RMS)} T_{vj} -40 ... +175 °C -40 ... +125 °C T_{stg} V_{isol} AC, 1 min. 2500 V

Characteristics T _s		T _s =	25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	V_{GE} = V_{CE} , I_C = 3,4 mA		5	5,8	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,02	mA	
		T _j = 125 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	,			1200	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		1,1	1,3	V	
		T _j = 150 °C		1	1,2	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		7,5		mΩ	
		T _j = 150°C		12,5		mΩ	
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V			1,85	2,05	V	
		$T_j = 150^{\circ}C_{chiplev.}$		2,25	2,45	V	
C _{ies}				5,54		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,41		nF	
C _{res}				0,32		nF	
Q _G	V _{GE} =-7V+15V			750		nC	
R _{Gint}	T _j = 25 °C			2		Ω	
t _{d(on)}				63		ns	
t,	$R_{Gon} = 16 \Omega$	V _{CC} = 600V		65		ns	
Ė _{on}	di/dt = 1800 A/µs	I _C = 100A		16,6		mJ	
^L d(off)	$R_{Goff} = 16 \Omega$	T _j = 150 °C		521		ns	
t _f ⊏	di/dt = 1800 A/µs	V _{GE} = ±15 V		80 10		ns	
E _{off}						mJ	
R _{th(j-s)}	per IGBT			0,6		K/W	

05-10-2009 DIL

SEMITOP[®] 3

IGBT Module

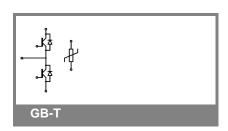
SK100GB12T4 T

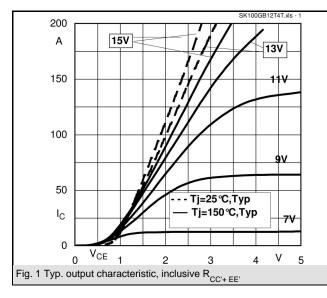
Target Data

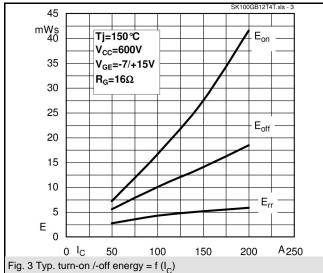
Features

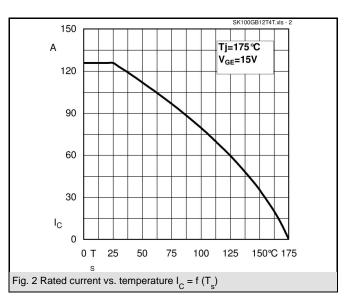
- One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor

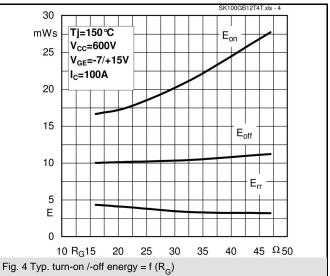
Typical Applications*

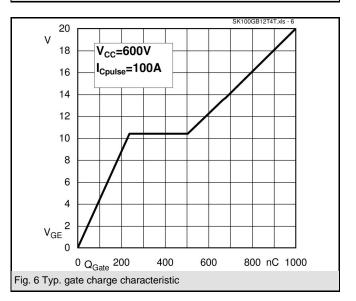

Remarks

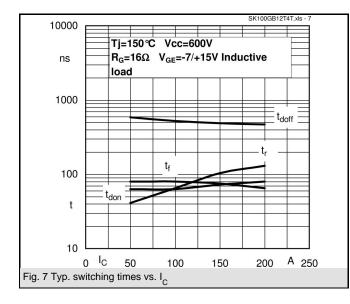

• V_{CE.sat} , V_F = chip level value

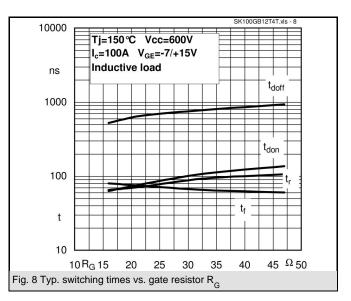

Characteristics									
Symbol	Conditions		min.	typ.	max.	Units			
Inverse D	Diode								
V _F = V _{EC}	I _{Fnom} = 100 A; V _{GE} = 0 V			2,25	2,55	V			
		T _j = 150 °C _{chiplev.}		2,2	2,5	V			
V _{F0}		T _j = 25 °C		1,3	1,5	V			
		T _j = 150 °C		0,9	1,1	V			
r _F		T _j = 25 °C		9,5	10,5	mΩ			
		T _j = 150 °C		13	14	mΩ			
I _{RRM}	I _F = 100 A	T _j = 150 °C		52		Α			
Q _{rr}	di/dt = 1800 A/µs	-		14		μC			
E _{rr}	V _{CC} = 600V			5,2		mJ			
R _{th(j-s)D}	per diode			0,87		K/W			
M _s	to heat sink				2,5	Nm			
w				30		g			
Tempera	ture sensor								
R ₁₀₀	T _s =100°C (R ₂₅ =5kΩ)			493±5%		Ω			

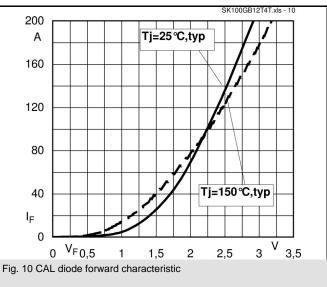

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

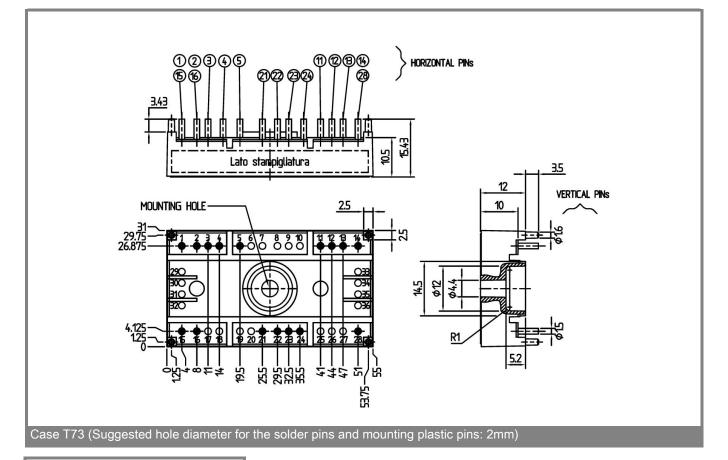

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.










3

© by SEMIKRON

5