

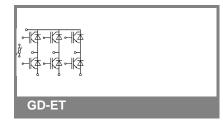
IGBT Module

SK10GD12T4ET

Target Data

Features

- One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor


Typical Applications*

Remarks

• $V_{CE,sat}$, V_F = chip level value

Absolute Maximum Ratings			T_s = 25 °C, unless otherwise specified			
Symbol	Conditions			Values	Units	
IGBT						
V_{CES}	T _j = 25 °C			1200	V	
I _C	T _j = 175 °C	T _s = 25 °C		17	Α	
		T _s = 70 °C		15	Α	
I _{CRM}	I _{CRM} = 3 x I _{Cnom}			24	Α	
V_{GES}				± 20	V	
t _{psc}	V_{CC} = 800 V; $V_{GE} \le 15$ V; VCES < 1200 V	T _j = 150 °C		10	μs	
Inverse [
I _F	T _j = 175 °C	$T_s = 25 ^{\circ}C$		15	Α	
		T _s = 70 °C		12	Α	
I _{FRM}	I _{FRM} = 3 x I _{Fnom}			24	Α	
Module						
I _{t(RMS)}					Α	
T _{vj}				-40 +175	°C	
T _{stg}				-40 + 125	°C	
V _{isol}	AC, 1 min.			2500	V	

Characteristics			T _s = 25 °C, unless otherwise specified					
Symbol	Conditions		min.	typ.	max.	Units		
IGBT								
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.3 \text{ mA}$		5	5,8	6,5	V		
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,001	mA		
		T _j = 125 °C				mA		
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V				120	nA		
		T _j = 125 °C				nA		
V _{CE0}		T _j = 25 °C		1,1	1,3	V		
		T _j = 150 °C		1	1,2	V		
r _{CE}	V _{GE} = 15 V	T _j = 25°C		93,8		mΩ		
		T _j = 150°C		156		$m\Omega$		
V _{CE(sat)}	I _{Cnom} = 8 A, V _{GE} = 15 V	T _j = 25°C _{chiplev} .		1,85	2,05	V		
		$T_j = 150^{\circ}C_{chiplev.}$		2,25	2,45	V		
C _{ies}				0,49		nF		
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,05		nF		
C _{res}				0,03		nF		
Q_G	V _{GE} =-7V+15V			37,5		nC		
t _{d(on)}				16		ns		
t _r	$R_{Gon} = 32 \Omega$	V _{CC} = 600V		14		ns		
Ė _{on}	di/dt = 1375 A/µs	I _C = 8A		0,41		mJ		
^t d(off)	$R_{Goff} = 32 \Omega$	T _j = 150 °C		273		ns		
т _f	di/dt = 1375 A/μs	V _{GE} = ±15 V		85		ns		
E _{off}				0,76		mJ		
$R_{th(j-s)}$	per IGBT			2,2		K/W		

IGBT Module

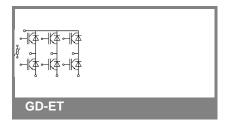
SK10GD12T4ET

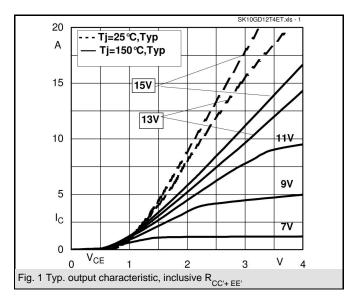
Target Data

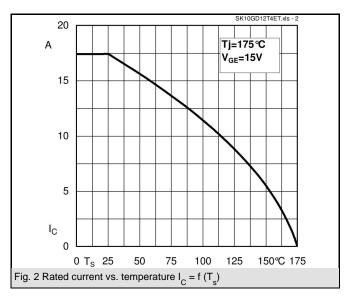
Features

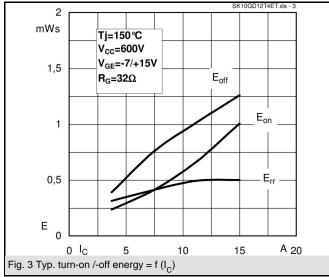
- One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor

Typical Applications*

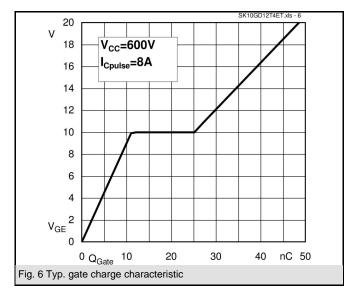

Remarks

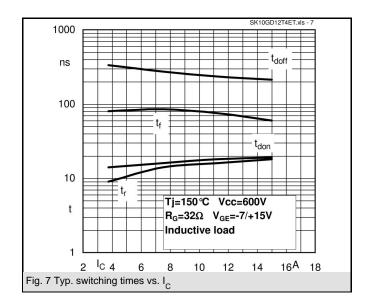

V_{CE.sat} , V_F = chip level value

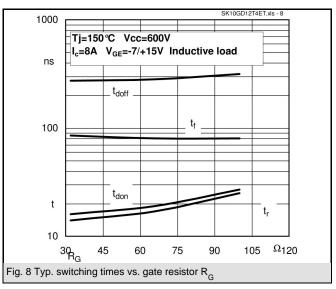

Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse D							
$V_F = V_{EC}$	I_{Fnom} = 8 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{chiplev.}$		2,38	2,71	V	
		$T_j = 150 ^{\circ}C_{chiplev.}$		2,44	2,77	V	
V_{F0}		T _j = 25 °C		1,3	1,5	V	
		T _j = 150 °C		0,9	1,1	V	
r _F		T _j = 25 °C		135	151,3	mΩ	
		T _j = 150 °C		192	208,8	mΩ	
I _{RRM}	I _F = 8 A	T _i = 150 °C		15		Α	
Q_{rr}	di/dt = 1375 A/µs			0,2		μC	
E _{rr}	V _{CC} = 600V			0,41		mJ	
R _{th(j-s)D}	per diode			2,7		K/W	
M_s	to heat sink		2,25		2,5	Nm	
w				30		g	
Temperat	ure sensor						
R ₁₀₀	$T_s = 100^{\circ}C (R_{25} = 5k\Omega)$			493±5%		Ω	

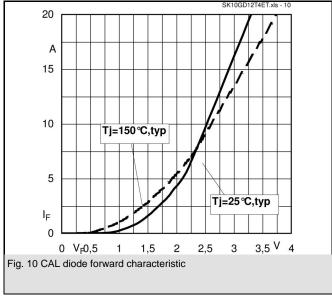

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

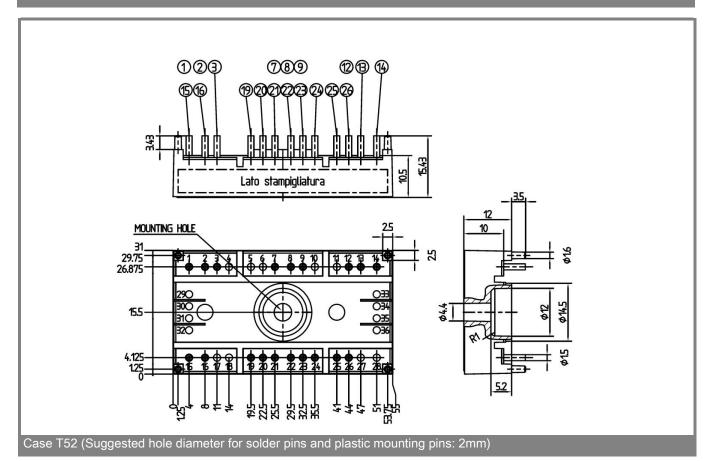

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

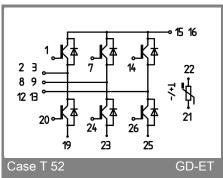












4 27-05-2009 DIL © by SEMIKRON

