

# SEMITRANS<sup>®</sup> 3

### **Trench IGBT Modules**

#### SKM 400GB176D SKM 400GAL176D

#### Features

- Homogeneous Si
- Trench = Trenchgate technology
- V<sub>CE(sat)</sub> with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I<sub>C</sub>

#### **Typical Applications\***

- AC inverter drives
- mains 575 750 V AC
- Public transport (auxiliary syst.)
- Wind power

| GB | GAL |  |
|----|-----|--|

| Absolut             | te Maximum Ratings                     | T <sub>case</sub> =       | = 25°C, unless otherwise s | pecified |
|---------------------|----------------------------------------|---------------------------|----------------------------|----------|
| Symbol Conditions   |                                        |                           | Values                     | Units    |
| IGBT                |                                        |                           |                            |          |
| V <sub>CES</sub>    | T <sub>j</sub> = 25 °C                 |                           | 1700                       | V        |
| I <sub>C</sub>      | T <sub>j</sub> = 150 °C                | T <sub>c</sub> = 25 °C    | 430                        | Α        |
|                     |                                        | T <sub>c</sub> = 80 °C    | 310                        | А        |
| I <sub>CRM</sub>    | I <sub>CRM</sub> =2xI <sub>Cnom</sub>  |                           | 600                        | А        |
| V <sub>GES</sub>    |                                        |                           | ± 20                       | V        |
| t <sub>psc</sub>    | $V_{CC}$ = 1200 V; $V_{GE} \leq$ 20 V; | T <sub>j</sub> = 125 °C   | 10                         | μs       |
|                     | V <sub>CES</sub> < 1700 V              |                           |                            |          |
| Inverse             |                                        |                           | _                          | _        |
| I <sub>F</sub>      | T <sub>j</sub> = 150 °C                | T <sub>c</sub> = 25 °C    | 440                        | A        |
|                     |                                        | T <sub>c</sub> = 80 °C    | 300                        | А        |
| I <sub>FRM</sub>    | I <sub>FRM</sub> =2xI <sub>Fnom</sub>  |                           | 600                        | А        |
| I <sub>FSM</sub>    | t <sub>p</sub> = 10 ms; sin.           | T <sub>j</sub> = 150 °C   | 2200                       | А        |
| Freewh              | eeling Diode                           |                           |                            | •        |
| I <sub>F</sub>      | T <sub>j</sub> = 150 °C                | T <sub>case</sub> = 25 °C | 440                        | Α        |
|                     |                                        | T <sub>case</sub> = 80 °C | 300                        | Α        |
| I <sub>FRM</sub>    | I <sub>FRM</sub> =2xI <sub>Fnom</sub>  |                           | 600                        | А        |
| I <sub>FSM</sub>    | t <sub>p</sub> = 10 ms; sin.           | T <sub>j</sub> = 150 °C   | 2200                       | Α        |
| Module              |                                        |                           |                            | •        |
| I <sub>t(RMS)</sub> |                                        |                           | 500                        | А        |
| T <sub>vj</sub>     |                                        |                           | - 40 + 150                 | °C       |
| T <sub>stg</sub>    |                                        |                           | - 40 + 125                 | °C       |
| V <sub>isol</sub>   | AC, 1 min.                             |                           | 4000                       | V        |

| Characteristics T <sub>case</sub> = |                                                   |                                            | 25°C, unless otherwise specified |      |       |       |
|-------------------------------------|---------------------------------------------------|--------------------------------------------|----------------------------------|------|-------|-------|
| Symbol                              | Conditions                                        |                                            | min.                             | typ. | max.  | Units |
| IGBT                                |                                                   |                                            |                                  |      |       |       |
| V <sub>GE(th)</sub>                 | $V_{GE} = V_{CE}, I_C = 12 \text{ mA}$            |                                            | 5,2                              | 5,8  | 6,4   | V     |
| I <sub>CES</sub>                    | $V_{GE}$ = 0 V, $V_{CE}$ = $V_{CES}$              | T <sub>j</sub> = 25 °C                     |                                  |      | 4     | mA    |
| V <sub>CE0</sub>                    |                                                   | T <sub>j</sub> = 25 °C                     |                                  | 1    | 1,2   | V     |
|                                     |                                                   | T <sub>j</sub> = 125 °C                    |                                  | 0,9  | 1,1   | V     |
| r <sub>CE</sub>                     | V <sub>GE</sub> = 15 V                            | T <sub>j</sub> = 25°C                      |                                  | 3,3  | 4,2   | mΩ    |
|                                     |                                                   | T <sub>j</sub> = 125°C                     |                                  | 5,2  | 6     | mΩ    |
| V <sub>CE(sat)</sub>                | I <sub>Cnom</sub> = 300 A, V <sub>GE</sub> = 15 V | T <sub>j</sub> = 25°C <sub>chiplev.</sub>  |                                  | 2    | 2,4   | V     |
|                                     |                                                   | T <sub>j</sub> = 125°C <sub>chiplev.</sub> |                                  | 2,45 | 2,9   | V     |
| C <sub>ies</sub>                    |                                                   |                                            |                                  | 19,8 |       | nF    |
| C <sub>oes</sub>                    | V <sub>CE</sub> = 25, V <sub>GE</sub> = 0 V       | f = 1 MHz                                  |                                  | 1,1  |       | nF    |
| C <sub>res</sub>                    |                                                   |                                            |                                  | 0,88 |       | nF    |
| Q <sub>G</sub>                      | V <sub>GE</sub> = -8V+15V                         |                                            |                                  | 2500 |       | nC    |
| t <sub>d(on)</sub>                  |                                                   |                                            |                                  | 330  |       | ns    |
| t <sub>r</sub>                      | $R_{Gon} = 4 \Omega$                              | V <sub>CC</sub> = 1200V                    |                                  | 55   |       | ns    |
| É <sub>on</sub>                     |                                                   | I <sub>C</sub> = 300A                      |                                  | 170  |       | mJ    |
| t <sub>d(off)</sub>                 | $R_{Goff} = 4 \Omega$                             | T <sub>j</sub> = 125 °C                    |                                  | 880  |       | ns    |
| t <sub>f</sub>                      |                                                   | V <sub>GE</sub> = ± 15V                    |                                  | 145  |       | ns    |
| E <sub>off</sub>                    |                                                   |                                            |                                  | 118  |       | mJ    |
| R <sub>th(j-c)</sub>                | per IGBT                                          |                                            |                                  |      | 0,075 | K/W   |

#### 28-06-2010 GIL



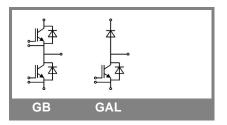
SEMITRANS<sup>®</sup> 3

#### Trench IGBT Modules

#### SKM 400GB176D SKM 400GAL176D

#### Features

- Homogeneous Si
- Trench = Trenchgate technology
- V<sub>CE(sat)</sub> with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I<sub>C</sub>


#### **Typical Applications\***

- AC inverter drives
- mains 575 750 V AC
- Public transport (auxiliary syst.)
- Wind power

| Characte                         |                                     |                                                            |      |      |       |       |
|----------------------------------|-------------------------------------|------------------------------------------------------------|------|------|-------|-------|
| Symbol                           | Conditions                          |                                                            | min. | typ. | max.  | Units |
| Inverse D                        |                                     |                                                            |      |      |       |       |
| $V_F = V_{EC}$                   | $I_{Fnom}$ = 300 A; $V_{GE}$ = 0 V  |                                                            |      | 1,7  | 1,9   | V     |
|                                  |                                     | $T_j = 125 \ ^\circ C_{chiplev.}$<br>$T_j = 25 \ ^\circ C$ |      | 1,8  | 2     | V     |
| V <sub>F0</sub>                  |                                     |                                                            |      | 1,2  | 1,4   | V     |
|                                  |                                     | T <sub>j</sub> = 125 °C                                    |      | 0,9  | 1,1   | V     |
| r <sub>F</sub>                   |                                     | T <sub>j</sub> = 25 °C                                     |      | 1,7  | 1,7   | mΩ    |
|                                  |                                     | T <sub>j</sub> = 125 °C                                    |      | 3    | 3     | mΩ    |
| I <sub>RRM</sub>                 | I <sub>F</sub> = 300 A              | T <sub>j</sub> = 125 °C                                    |      | 418  |       | А     |
| Q <sub>rr</sub>                  | di/dt = 5800 A/µs                   |                                                            |      | 117  |       | μC    |
| E <sub>rr</sub>                  | $V_{GE}$ = -15 V; $V_{CC}$ = 1200 V | /                                                          |      | 78   |       | mJ    |
| R <sub>th(j-c)D</sub>            | per diode                           |                                                            |      |      | 0,125 | K/W   |
| FWD                              |                                     |                                                            |      |      |       | •     |
| V <sub>F</sub> = V <sub>EC</sub> | $I_{Fnom}$ = 300 A; $V_{GE}$ = 0 V  | T <sub>j</sub> = 25 °C <sub>chiplev.</sub>                 |      | 1,7  | 1,9   | V     |
|                                  |                                     | $T_j = 125 \ ^\circ C_{chiplev.}$<br>$T_j = 25 \ ^\circ C$ |      | 1,8  | 2     | V     |
| V <sub>F0</sub>                  |                                     | T <sub>j</sub> = 25 °C                                     |      | 1,2  | 1,4   | V     |
|                                  |                                     | T <sub>j</sub> = 125 °C                                    |      | 0,9  | 1,1   | V     |
| r <sub>F</sub>                   |                                     | T <sub>j</sub> = 25 °C                                     |      | 1,7  | 1,7   | V     |
|                                  |                                     | T <sub>j</sub> = 125 °C                                    |      | 3    | 3     | V     |
| I <sub>RRM</sub>                 | I <sub>F</sub> = 300 A              | T <sub>j</sub> = 125 °C                                    |      | 418  |       | А     |
| Q <sub>rr</sub>                  | di/dt = 5800 A/µs                   |                                                            |      | 117  |       | μC    |
| Err                              | $V_{GE}$ = -15 V; $V_{CC}$ = 1200 V | /                                                          |      | 78   |       | mJ    |
| R <sub>th(j-c)FD</sub>           | per diode                           |                                                            |      |      | 0,125 | K/W   |
| Module                           |                                     |                                                            |      |      |       |       |
| L <sub>CE</sub>                  |                                     |                                                            |      | 15   | 20    | nH    |
| R <sub>CC'+EE'</sub>             | res., terminal-chip                 | T <sub>case</sub> = 25 °C                                  |      | 0,35 |       | mΩ    |
|                                  |                                     | T <sub>case</sub> = 125 °C                                 |      | 0,5  |       | mΩ    |
| R <sub>th(c-s)</sub>             | per module                          |                                                            |      |      | 0,038 | K/W   |
| M <sub>s</sub>                   | to heat sink M6                     |                                                            | 3    |      | 5     | Nm    |
| M <sub>t</sub>                   | to terminals M6                     |                                                            | 2,5  |      | 5     | Nm    |
| w                                |                                     |                                                            |      |      | 325   | g     |

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

\* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.





Z<sub>th</sub> Symbol

Z Rith(j-c)I Conditions

i = 1

# SEMITRANS<sup>®</sup> 3

#### Trench IGBT Modules

#### R i = 2 18 R i = 3 4,6 R<sub>i</sub> i = 4 0,4 0,0569 tau, i = 1 i = 2 0,0122 tau<sub>i</sub> 0,002 tau<sub>i</sub> i = 3 tau<sub>i</sub> i = 4 0.02 Z <sub>Ri</sub>th(j-c)D i = 1 85 R i = 2 28 R<sub>i</sub> i = 3 10,5 R<sub>i</sub> i = 4 1,5 0,054 tau<sub>i</sub> i = 1 0,0075 tau, i = 2 tau<sub>i</sub> i = 3 0,0018 i = 4 0,0002 tau,

Values

52

Units

mk/W

mk/W

mk/W

mk/W

s

s

s

s

mk/W

mk/W

mk/W

mk/W

s

s

s

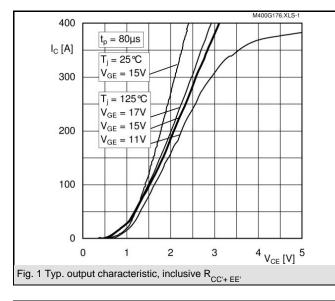
s

#### Features

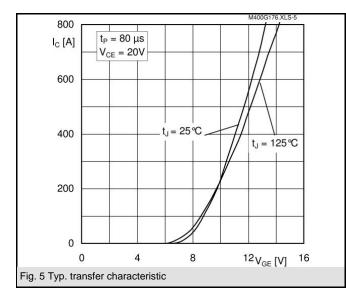
Homogeneous Si

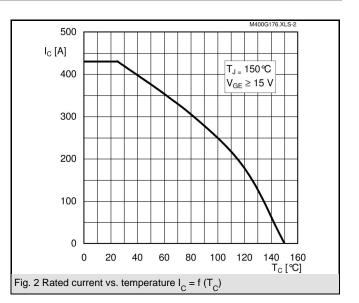
SKM 400GB176D

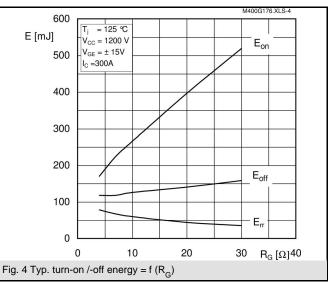
**SKM 400GAL176D** 

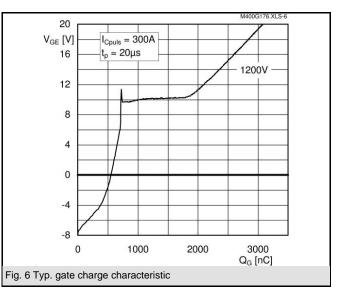

- Trench = Trenchgate technology
- V<sub>CE(sat)</sub> with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I<sub>C</sub>

#### **Typical Applications\***

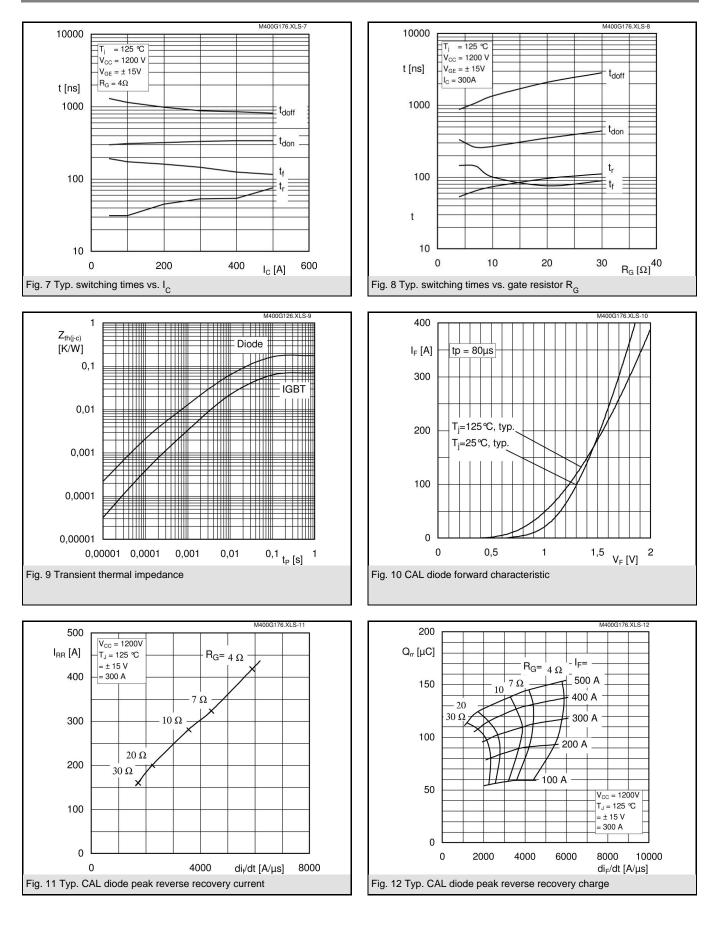

- AC inverter drives
- mains 575 750 V AC
- Public transport (auxiliary syst.)
- Wind power





3

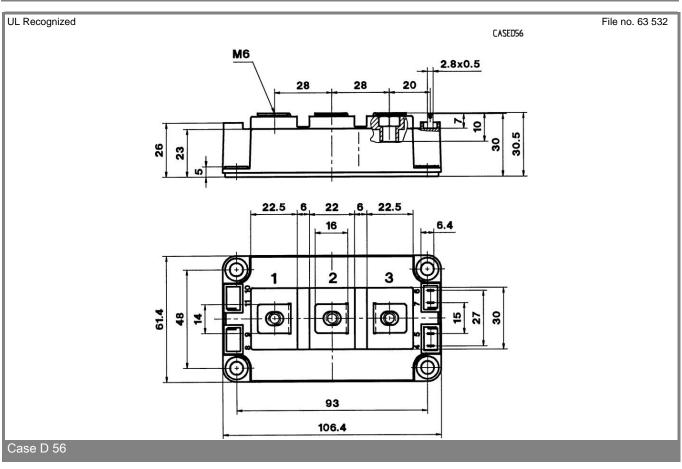


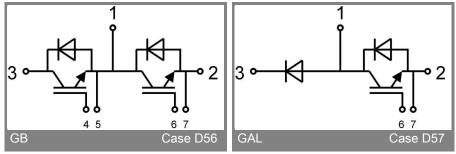








4



28-06-2010 GIL

5



