SK 60 MD 10

SEMITOP® 2

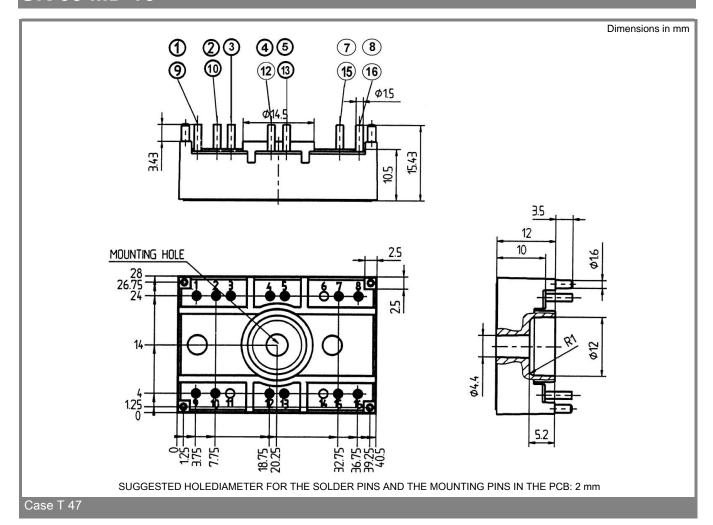
MOSFET Module

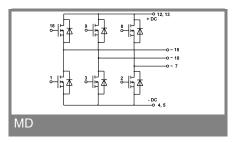
SK 60 MD 10

Target Data

Features

- Compact design
- · One screw mounting
- · Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- Trench-gate technology
- · Short internal connections and low inductance case


Typical Applications*


- · Low switched mode power supplies
- DC servo drives
- UPS
- 1) Maximum PCB temperature, at pins contact, = 85°C

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified								
Symbol	Conditions	Values	Units					
MOSFET								
V_{DSS}		100	V					
V_{GSS}		± 20	V					
I _D	$T_s = 25 (80) ^{\circ}C; 1)$	80 (60)	Α					
I _{DM}	$t_p < 1 \text{ ms; } T_s = (80) ^{\circ}\text{C; } 1)$	(120)	Α					
T _j		- 40 + 150	°C					
Inverse diode								
$I_F = -I_D$	T _s = 25 (80) °C;	80 (60)	Α					
$I_{FM} = -I_{DM}$	$t_p < 1 \text{ ms}; T_s = (80) ^{\circ}C;$	(120)	Α					
T _j		- 40 + 150	°C					
Freewheeling CAL diode								
$I_F = -I_D$	$T_s = ^{\circ}C$		Α					
T _j			°C					
T _{stg}		- 40 + 125	°C					
T _{sol}	Terminals, 10 s	260	°C					
V _{isol}	AC, 1 min (1s)	2500 / 3000	V					

Characte	ristics	T _s = 25 °C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
MOSFET								
V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 5.6 \text{ mA}$	100			V			
V _{GS(th)}	$V_{GS} = V_{DS}; I_{D} = 5,6 \text{ mA}$	2,5	3,3		V			
I _{DSS}	$V_{GS} = 0 \text{ V}; V_{DS} = V_{DSS}; T_j = 25 \text{ °C}$			100	μΑ			
I _{GSS}	$V_{GS} = \pm 20V ; V_{DS} = 0 V$			100	nA			
R _{DS(on)}	$I_D = 80 \text{ A}; V_{GS} = 10 \text{ V}; T_j = 25 ^{\circ}\text{C}$			7,5	mΩ			
R _{DS(on)}	$I_D = 80 \text{ A}; V_{GS} = 10 \text{ V}; T_j = 125 \text{ °C}$			13,5	mΩ			
C _{CHC}	per MOSFET				pF			
C _{iss}	under following conditions:		9,1		nF			
Coss	$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$		1,8		nF			
C _{rss}			1,6		nF			
L _{DS}					nΗ			
t _{d(on)}	under following conditions:		300		ns			
t _r	V _{DD} = 50 V; V _{GS} = 10 V; I _D = 50 A		150		ns			
l _t	$R_{\rm G} = 56 \Omega$		1600		ns			
$t_{d(off)}$ t_{f}	11.G 55.12		160		ns			
R _{th(j-s)}	per MOSFET (per module)			1,1	K/W			
Inverse diode								
V _{SD}	I _F = 50 A; V _{GS} = 0 V; T _i = 50 °C	1	0,9		V			
I _{RRM}	under following conditions:		24		Α			
Q _{rr}	$I_{\rm F}$ = 50 A; $T_{\rm vi}$ = 25 °C; $R_{\rm G}$ = 56 Ω		0,9		μC			
t _{rr} "	$V_{R} = 65 \text{ A}; \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		70		ns			
Free-wheeling diode								
V _F	I _F = A; V _{GS} = V	1			V			
	. 55							
I _{RRM}	under following conditions:	1			Α			
Q _{rr}	I _F = A; T _{vj} = °C				μC			
t _{rr}	$V_r = A$; di/dt = A/ μ s				ns			
Mechanic	cal data	•						
M1	mounting torque			2	Nm			
w			20		g			
Case	SEMITOP® 2		T 47					
		_						

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.