SKiM 300GD126DL

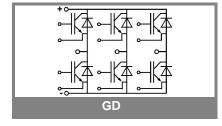
SKiM[®] 4

IGBT Modules

SKiM 300GD126DL

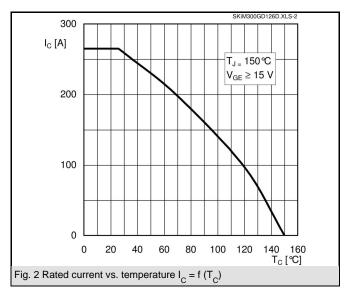
Data

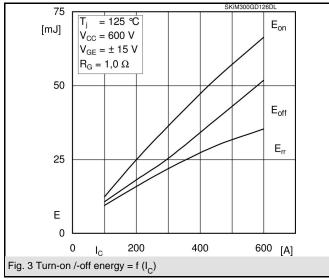
Features

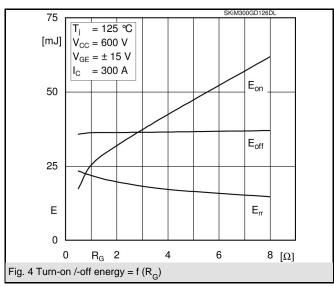

- Trench gate IGBT with field stop layer
- · Low inductance case
- · Fast & soft inverse CAL diode
- Isolated by Al₂O₃ DCB (Direct Copper Bonded) ceramic plate
- Pressure contact technology for thermal contacts
- Spring contact system to attach driver PCB to the control terminals
- Integrated temperature sensor

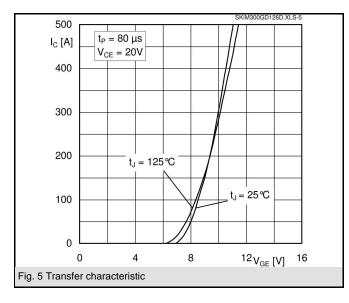
Typical Applications*

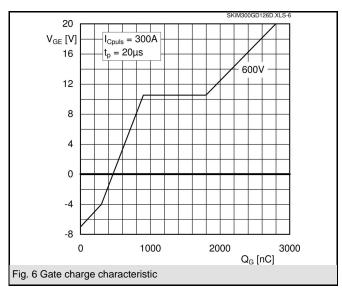
- Switched mode power supplies
- Three phase inverters for AC motor speed control
- Switching (not for linear use)

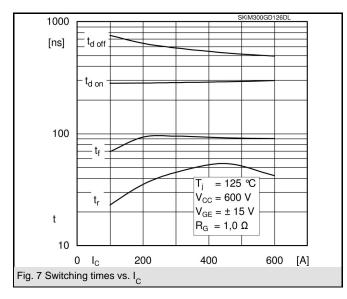

Absolute	Maximum Ratings	T _{case} = 25°C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1200	V					
I _C	$T_s = 25 (70) ^{\circ}C$ $t_p = 1 \text{ ms}$	270 (200)	Α					
I _{CRM}	t _p = 1 ms	600	Α					
V_{GES}		±20	V					
$T_i(T_{sta})$		- 40+ 150 (125)	°C					
T _{cop}	max. case operating temperature	125	°C					
V _{isol}	AC, 1 min.	2500	V					
Inverse diode								
I _F	T _s = 25 (70) °C	200 (145)	Α					
I _{FRM}	$t_p = 1 \text{ ms}$	400	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 ^{\circ}\text{C}$	2200	Α					

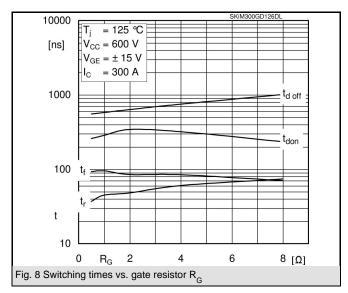

Characte	ristics T _{ca}	_{se} = 25°C	_e = 25°C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units		
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$; $I_C = 12 \text{ mA}$	5	5,8	6,5	V		
I _{CES}	$V_{GE} = 0; V_{CE} = V_{CES};$ $T_i = 25 °C$			0,3	mA		
V_{CEO}	T _i = 25 (125) °C		1 (0,9)	1,2 (1,1)	V		
r _{CE}	T _j = 25 (125) °C		2,2 (3,5)	3 (4,3)	mΩ		
V _{CEsat}	I _{Cnom} = 300 A; V _{GE} = 15 V,		1,65 (1,95)	2,1 (2,4)	V		
	$T_j = 25 (125)$ °C on chip level						
C _{ies}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz		22,5		nF		
C _{oes}	$V_{GE} = 0$; $V_{CE} = 25 \text{ V}$; $f = 1 \text{ MHz}$		1,8		nF		
C _{res}	$V_{GE} = 0$; $V_{CE} = 25 \text{ V}$; $f = 1 \text{ MHz}$		1,65		nF		
L _{CE}			10	15	nΗ		
R _{CC'+EE'}	resistance, terminal-chip T _c = 25 (125) °C		1,35 (1,75)		mΩ		
t _{d(on)}	V _{CC} = 600 V		285		ns		
t _r	I _{Cnom} = 300 A		45		ns		
t _{d(off)}	$R_{Gon} = R_{Goff} = 1 \Omega$		580		ns		
t _f	T _j = 125 °C		95		ns		
E _{on} (E _{off})	V _{GE} ± 15 V		25 (36)		mJ		
$E_{on} \left(E_{off} \right)$	with SKHI 6; T _j = °C				mJ		
	$V_{CC} = V; I_C = A$						
Inverse d					•		
$V_F = V_{EC}$	I _{Fnom} = 200 A; V _{GE} = 0 V; T _i = 25 (125) °C		2 (1,8)	2,5 (2,3)	V		
V_{TO}	T _i = 25 (125) °C		1,1 (0,85)	1,45 (1,2)	V		
r _T	T _j = 25 (125) °C		4,5 (4,8)	5,3 (5,5)	mΩ		
I _{RRM}	I _F = 300 A; T _j = 125 °C		450		Α		
Q_{rr}	V _{GE} = 0 V di/dt = 11000 A/µs		47		μC		
E _{rr}	$R_{Gon} = R_{Goff} = 1 \Omega$		22		mJ		
Thermal characteristics							
$R_{th(j-s)}$	per IGBT			0,2	K/W		
$R_{th(j-s)}$	per FWD			0,285	K/W		
Tempera	ture Sensor						
R_{TS}	T = 25 (100) °C		1 (1,67)		kΩ		
tolerance	T = 25 (100) °C		3 (2)		%		
Mechanic	cal data						
M ₁	to heatsink (M5)	2		3	Nm		
M_2	for terminals (M6)	4		5	Nm		
w				310	g		

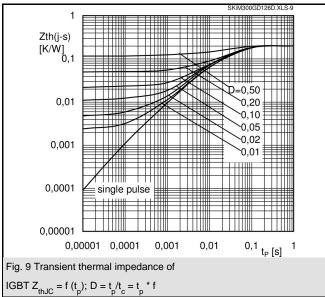


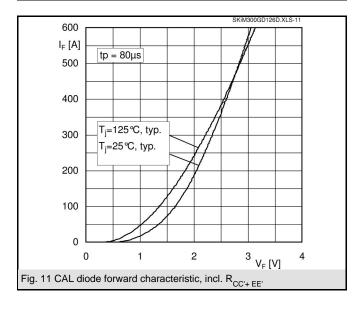

SKiM 300GD126DL

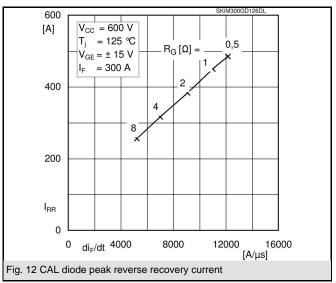


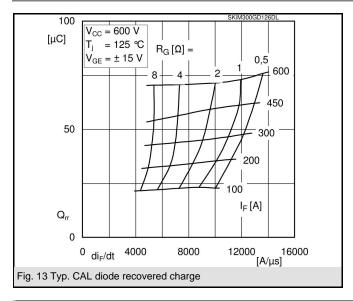


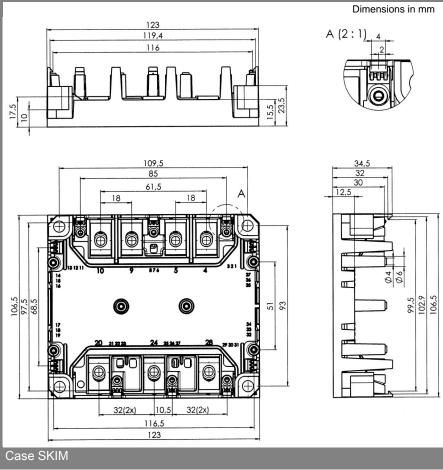


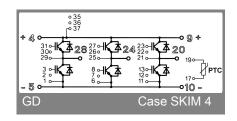



SKIM 300GD126DL









SKIM 300GD126DL

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.