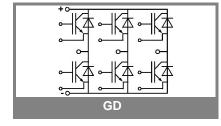
SKiM 220GD176D H4

IGBT Modules

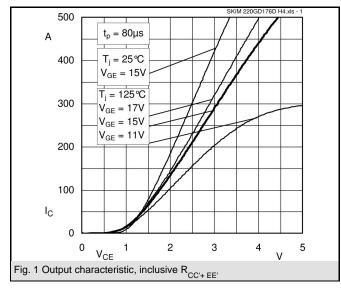
SKiM 220GD176D H4

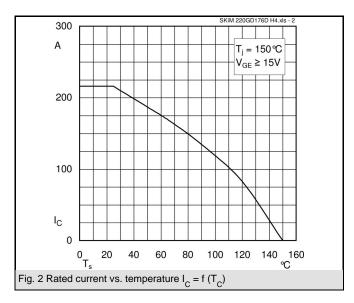
Preliminary Data

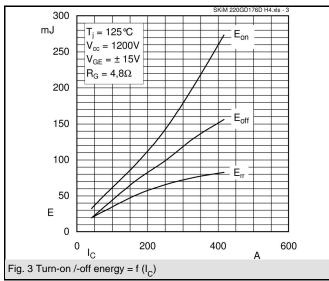
Features

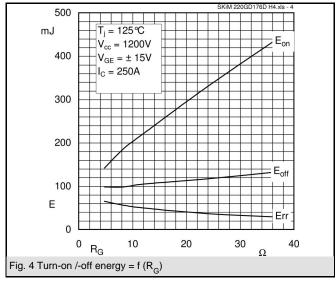

- · Homogenous Si
- Trench = Trenchgate Technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6x I_C

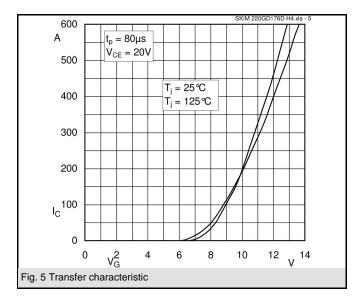
Typical Applications*

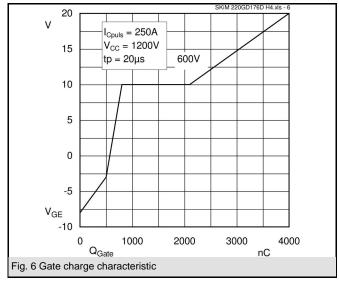

- AC inverter drives mains 575 -750 V AC
- public transport (auxiliary syst.)

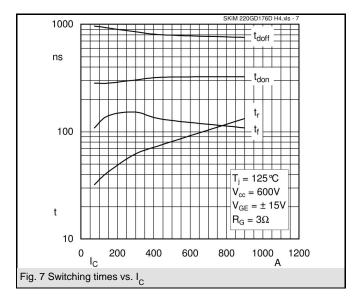

Absolute Maximum Ratings		T_c = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT			•				
V_{CES}		1700	V				
I _C	$T_s = 25 (70) ^{\circ}C$ $t_n = 1 \text{ ms}$	220 (165)	Α				
I _{CRM}	$t_p = 1 \text{ ms}$	440	Α				
V_{GES}		± 20	V				
$T_i(T_{sto})$		- 40+ 150 (125)	°C				
T _{cop}	max. case operating temperature	125	°C				
V_{isol}	AC, 1 min.	4000	V				
Inverse diode							
I _F	T _s = 25 (70) °C	220 (165)	Α				
I _{FRM}	$t_p = 1 \text{ ms}$	440	Α				
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 ^{\circ}\text{C}$	2200	Α				

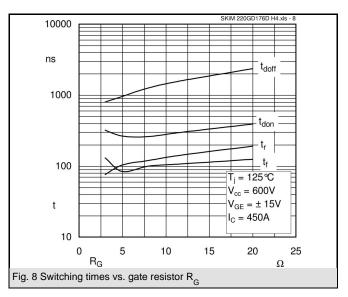

Characte	ristics T _e	c = 25 °C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units	
IGBT					•	
$V_{GE(th)}$	$V_{GE} = V_{CE}$; $I_C = 10 \text{ mA}$	5,15	5,8	6,45	V	
I _{CES}	$V_{GE} = 0; V_{CE} = V_{CES};$ $T_i = 25 ^{\circ}C$			0,3	mA	
V_{CEO}	$T_i' = 0$ °C		1 (0,9)	1,2 (1,1)	V	
r _{CE}	T _j = °C		4 (6)	5	mΩ	
V_{CEsat}	I _{Cnom} = 250 A; V _{GE} = 15 V,		2 (2,4)	2,45	V	
	T _i = 25 (125) °C on chip level					
C _{ies}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz		22		nF	
C _{oes}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz		0,9		nF	
C _{res}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz		0,7		nF	
L _{CE}				15	nΗ	
R _{CC'+EE'}	resistance, terminal-chip T _c = 25 (125) °C		1,35 (1,75)		mΩ	
t _{d(on)}	V _{CC} = 1200 V		330		ns	
t _r	I _{Cnom} = 250 A		55		ns	
$t_{d(off)}$	$R_{Gon} = R_{Goff} = 4.8 \Omega$		880		ns	
t_f	T _j = 125 °C		145		ns	
$E_{on} \left(E_{off} \right)$	V _{GE} ± 15 V		145 (100)		mJ	
E _{on} (E _{off})	with SKHI 64; T _j = 125 °C				mJ	
	V _{CC} = 1200 V; I _C = 250 A					
Inverse d	liode					
$V_F = V_{EC}$	I _{Fnom} = 250 A; V _{GE} = 15 V; T _i = 25 (125) °C		1,7 (1,8)	1,9 (2)	V	
V_{TO}	T _i = 25 (125) °C		1,1 (0,9)	1,3 (1,1)	V	
r _T	T _i = 25 (125) °C		3 (4,5)	3 (4,5)	mΩ	
I _{RRM}	I _F = 200 A; T _j = 125 °C				Α	
Q_{rr}	V _{GE} = 0 V di/dt = A/μs				μC	
E _{rr}	$R_{Gon} = R_{Goff} = 4.8 \Omega$		(65)		mJ	
Thermal	characteristics					
$R_{th(j-s)}$	per IGBT			0,21	K/W	
R _{th(j-s)}	per FWD			0,26	K/W	
Tempera	ture Sensor					
R _{TS}	T = 25 (100) °C		1 (1,67)		kΩ	
tolerance	T = 25 (100) °C		3 (2)		%	
Mechanic	cal data					
M ₁	to heatsink (M5)	2		3	Nm	
	for terminals (M6)	4		5	Nm	
M_2	ioi torrimidio (ivio)	-		•		

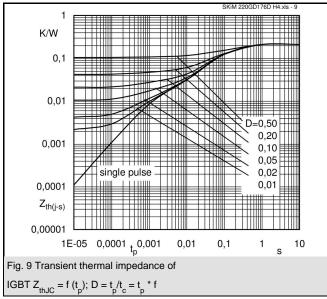


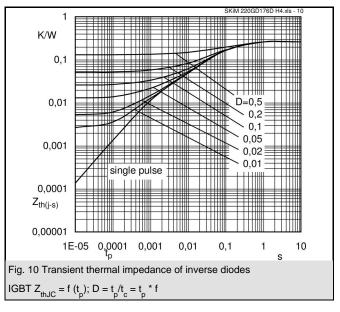

SKiM 220GD176D H4

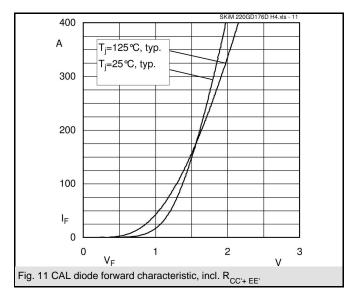


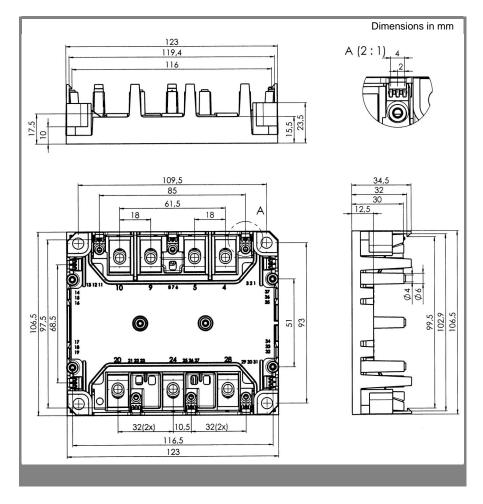


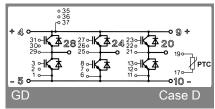







SKiM 220GD176D H4





This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.