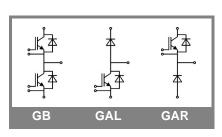


SEMITRANS[®] 3

IGBT Modules


SKM 200GB173D SKM 200GB173D1 SKM 200GAL173D SKM 200GAR173D

Features

- MOS input (voltage controlled)
- N channel , Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distance (20 mm)

Typical Applications*

- AC inverter drives on mains 575 750 $\rm V_{AC}$
- DC bus voltage 750 1200 V_{DC}
- Public transport (auxiliary syst.)
- Switching (not for linear use)

	te Maximum Ratings	° C	25 °C, unless otherwise s	
Symbol	Conditions		Values	Units
IGBT				
V _{CES}	$T_j = 25 \text{ °C}$ $T_j = 150 \text{ °C}$		1700	V
I _C	T _j = 150 °C	T _{case} = 25 °C	220	Α
		T _{case} = 80 °C	150	А
I _{CRM}	I _{CRM} =2xI _{Cnom}		300	А
V_{GES}			± 20	V
t _{psc}	V_{CC} = 1200 V; $V_{GE} \le 20$ V;	T _j = 125 °C	10	μs
	V _{CES} < 1700 V	-		
Inverse	Diode			
I _F	T _j = 150 °C	T _{case} = 25 °C	150	А
		T _{case} = 80 °C	100	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}		300	А
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	1450	А
Freewh	eeling Diode			
I _F	T _j = 150 °C	T _{case} = 25 °C	230	Α
		T _{case} = 80 °C	150	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}		400	А
I _{FSM}	t _p = 10 ms; sin	T _j = 150 °C	2200	А
Module	1			
I _{t(RMS)}			500	А
Τ _{vj}			- 40 + 150	°C
T _{stg}			- 40 + 125	°C
V _{isol}	AC, 1 min.		4000	V

Characteristics $T_c =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 10 \text{ mA}$		4,8	5,5	6,2	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C		0,1	0,3	mA
V _{CE0}		T _j = 25 °C		1,65	1,9	V
		T _j = 125 °C		1,9	2,15	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		11,7	13,3	mΩ
		$T_{j} = 125^{\circ}C$		17,3	19	mΩ
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V	$T_j = 25^{\circ}C_{chiplev.}$		3,4	3,9	V
		T _j = 125°C _{chiplev.}		4,5	5	V
C _{ies}				20		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		2		nF
C _{res}				0,55		nF
Q _G	VGE=0V/+20V			2000		nC
t _{d(on)}				580		ns
t,	$R_{Gon} = 4 \Omega$	V _{CC} = 1200V		100		ns
E _{on}		I _C = 150A		95		mJ
t _{d(off)}	$R_{Goff} = 4 \Omega$	T _j = 125 °C		750		ns
t _f		V _{GE} = ± 15V		40		ns
E _{off}				45		mJ
R _{th(j-c)}	per IGBT				0,1	K/W

14-03-2008 CHD

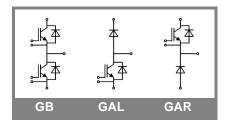
SEMITRANS[®] 3

IGBT Modules

SKM 200GB173D SKM 200GB173D1 SKM 200GAL173D SKM 200GAR173D

Features

- MOS input (voltage controlled)
- N channel , Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distance (20 mm)


Typical Applications*

- AC inverter drives on mains 575 750 $\rm V_{AC}$
- DC bus voltage 750 1200 V_{DC}
- Public transport (auxiliary syst.)
- Switching (not for linear use)

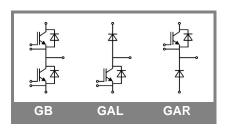
Characte	Characteristics						
Symbol	Conditions		min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	I_{Fnom} = 150 A; V_{GE} = 0 V			2,2	2,7	V	
		$T_j = 125 \ ^{\circ}C_{chiplev.}$		1,9		V	
V _{F0}		T _j = 125 °C		1,3	1,5	V	
r _F		T _j = 125 °C T _j = 125 °C		4,5	6,2	mΩ	
I _{RRM}	I _F = 150 A	T _j = 125 °C		85		Α	
Q _{rr}	di/dt = 1000 A/µs			38		μC	
E _{rr}	$V_{GE} = -15 \text{ V}; \text{ V}_{CC} = 1200 \text{ V}$	/				mJ	
R _{th(j-c)D}	per diode				0,32	K/W	
FWD							
$V_F = V_{EC}$	I_{Fnom} = 150 A; V_{GE} = 0 V			2	2,4	V	
		$T_j = 125 \ ^{\circ}C_{chiplev.}$		1,8		V	
V _{F0}		T _j = 125 °C		1,3	1,5	V	
r _F		T _j = 125 °C		3,5	4,5	V	
I _{RRM}	I _F = 150 A	T _j = 125 °C		110		Α	
Q _{rr}				50		μC	
E _{rr}	V_{GE} = -15 V; V_{CC} = 1200 V	/				mJ	
R _{th(j-c)FD}	per diode				0,21	K/W	
Module							
L _{CE}				15	20	nH	
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ	
		T _{case} = 125 °C		0,5		mΩ	
R _{th(c-s)}	per module				0,038	K/W	
M _s	to heat sink M6		3		5	Nm	
w					325	g	

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

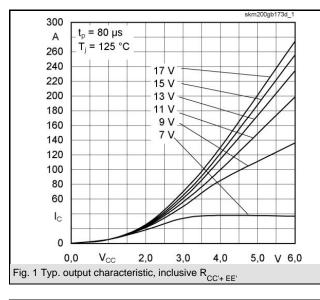
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

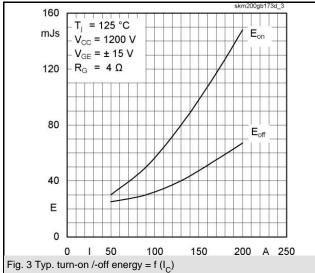
SEMITRANS[®] 3

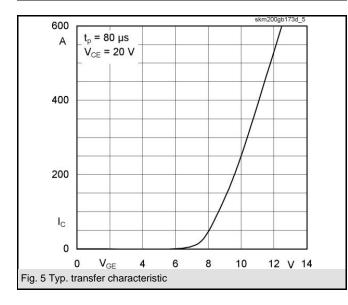
IGBT Modules

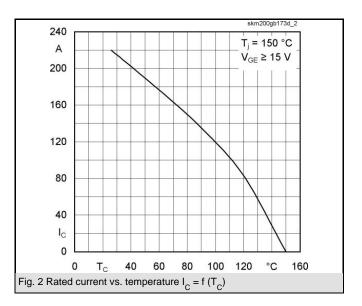

SKM 200GB173D SKM 200GB173D1 SKM 200GAL173D SKM 200GAR173D

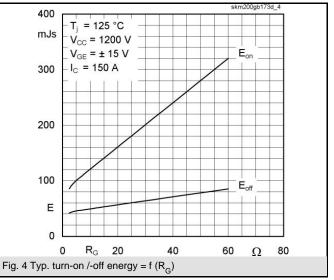
Features

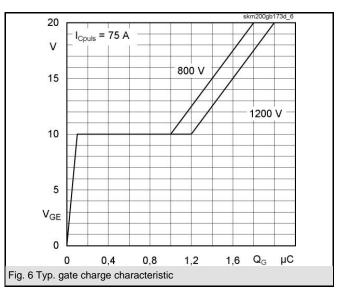

- MOS input (voltage controlled)
- N channel , Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distance (20 mm)

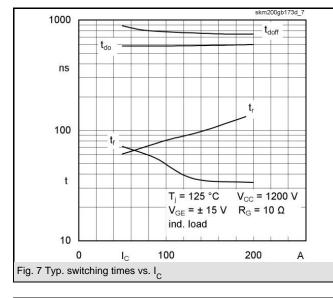

Typical Applications*

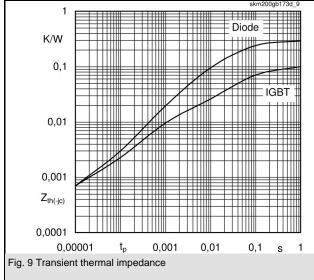

- AC inverter drives on mains 575 750 $\rm V_{AC}$
- DC bus voltage 750 1200 V_{DC}
- Public transport (auxiliary syst.)
- Switching (not for linear use)

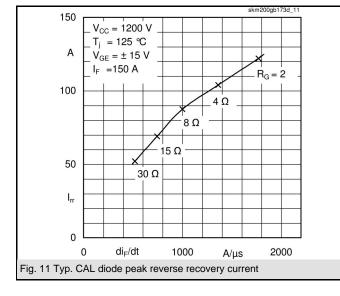


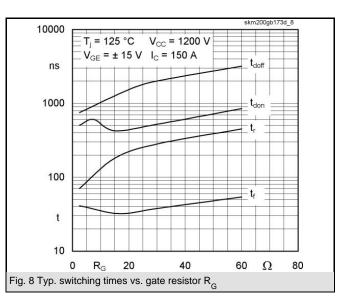

Z _{th}			
Symbol	Conditions	Values	Units
Ζ			
Z Ri Ri	i = 1	72	mk/W
R _i	i = 2	19	mk/W
R _i	i = 3	6,9	mk/W
R _i	i = 4	2,1	mk/W
tau	i = 1	0,0946	s
tau	i = 2	0,011	s
tau _i	i = 3	0,0011	s
tau _i	i = 4	0	s
Z _{Ri} th(j-c)D			
R _i	i = 1	230	mk/W
R _i	i = 2	70	mk/W
R _i	i = 3	17	mk/W
R _i	i = 4	3	mk/W
tau _i	i = 1	0,0839	s
tau	i = 2	0,0069	s
tau _i	i = 3	0,0028	s
tau _i	i = 4	0,0002	s

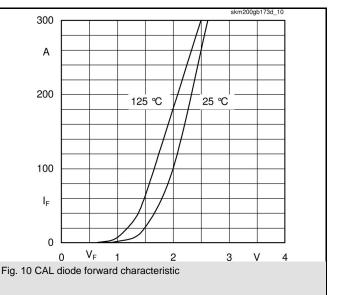


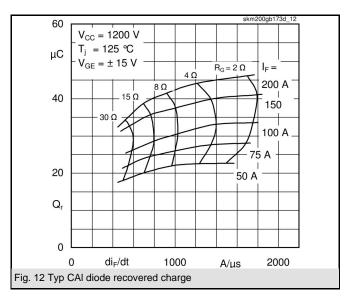


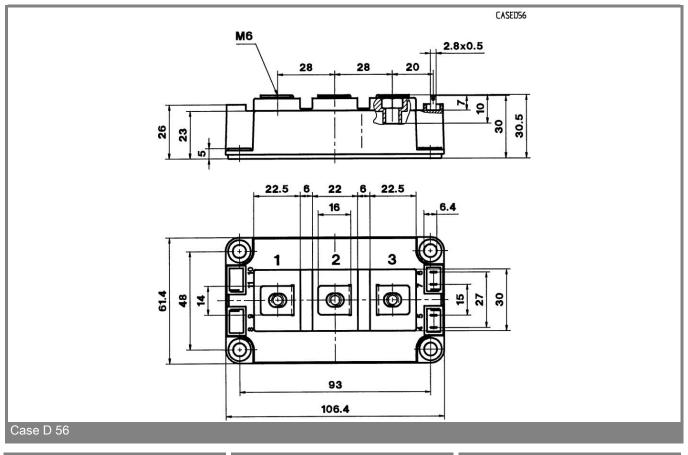


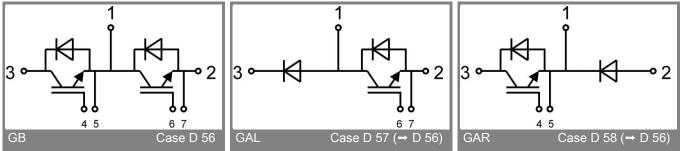





4







14-03-2008 CHD

© by SEMIKRON

Downloaded from Elcodis.com electronic components distributor

