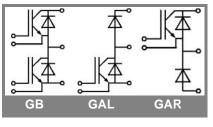


SEMITRANSTM 3

IGBT Modules

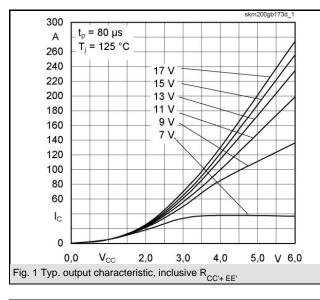

SKM 200GB173D SKM 200GB173D1 SKM 200GAL173D SKM 200GAR173D

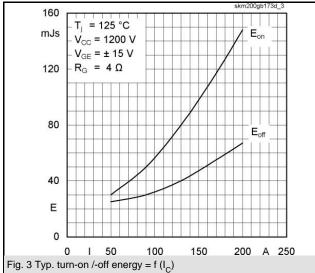
Features

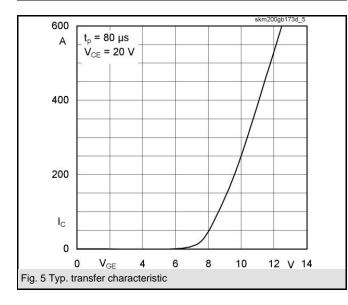
- MOS input (voltage controlled)
- N channel , Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distance (20 mm)

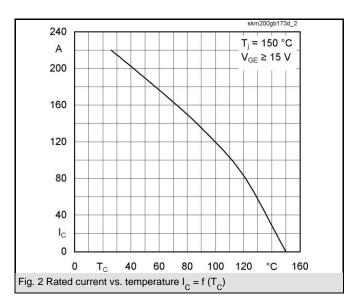
Typical Applications

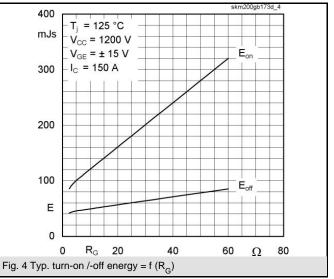
- AC inverter drives on mains 575 750 $\rm V_{AC}$
- DC bus voltage 750 1200 V_{DC}
- Public transport (auxiliary syst.)
- Switching (not for linear use)

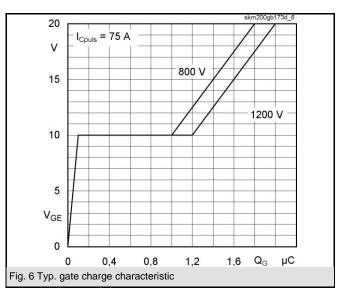


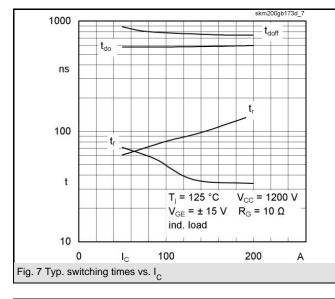

Absolute Maximum Ratings		T_c = 25 °C, unless otherwise	T_c = 25 °C, unless otherwise specified				
Symbol	Conditions	Values	Units				
IGBT							
V _{CES}		1700	V				
I _C	T _c = 25 (80) °C	220 (150)	Α				
ICRM	t _p = 1 ms	300	Α				
V _{GES}		± 20	V				
T _{vj} , (T _{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C				
V _{isol}	AC, 1 min.	4000	V				
Inverse diode							
I _F	T _c = 25 (80) °C	150 (100)	Α				
I _{FRM}	t _p = 1 ms	300	Α				
I _{FSM}	t _p = 10 ms; sin.; T _j = 150 °C	1450	А				
Freewheeling diode							
I _F	T _c = 25 (80) °C	230 (150)	А				
I _{FRM}	t _p = 1 ms	400	А				
I _{FSM}	t _p = 10 ms; sin; T _j = 150 °C	2200	А				

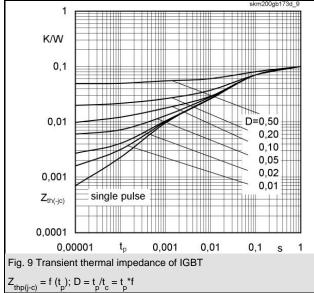

Characteristics		T_c = 25 °C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 10 \text{ mA}$	4,8	5,5	6,2	V	
ICES	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) \ ^{\circ}C$		0,1	0,3	mA	
V _{CE(TO)}	$T_j = 25 (125) °C$		1,65 (1,9)	1,9 (2,15)	V	
r _{CE}	$V_{GE} = 15 \text{ V}, \text{ T}_{j} = 25 (125) \text{ °C}$		11,7 (17,3)		mΩ	
V _{CE(sat)}	I_{Cnom} = 150 A, V_{GE} = 15 V, chip level		3,4 (4,5)	3,9 (5)	V	
C _{ies}	under following conditions		20		nF	
C _{oes}	V_{GE} = 0, V_{CE} = 25 V, f = 1 MHz		2		nF	
C _{res}			0,55	20	nF nH	
L _{CE}	T = 0.5 (405)			20		
R _{CC'+EE'}	res., terminal-chip $T_c = 25 (125) \degree C$		0,35 (0,5)		mΩ	
t _{d(on)}	$V_{CC} = 1200 \text{ V}, I_{Cnom} = 150 \text{ A}$		580 100		ns	
t _r +	$R_{Gon} = R_{Goff} = 4 \Omega, T_j = 125 °C$ $V_{GE} = \pm 15 V$		750		ns ns	
t _{d(off)} t _f	V _{GE} = 1 13 V		40		ns	
ч E _{on} (E _{off})			95 (45)		mJ	
			35 (45)		1110	
Inverse d		1	2.2 (4.0)	0.7	V	
$V_F = V_{EC}$	I _{Fnom} = 150 A; V _{GE} = 0 V; T _j = 25 (125) °C		2,2 (1,9)	2,7	v	
V _(TO)	T _i = 125 () °C		1,3	1,5	V	
r _T	T _j = 125 () °C		4,5	6,2	mΩ	
I _{RRM}	I _{Fnom} = 150 A; T _j = 25 (125) °C		60 (85)		А	
Q _{rr}	di/dt = 1000 A/µs		15 (38)		μC	
Err	V _{GE} = 0 V				mJ	
FWD						
V _F = V _{EC}	I _F = 150 A; V _{GE} = 0 V, T _j = 25 (125) °C		2 (1,8)	2,4	V	
V _(TO)	T _j = 125 () °C		1,3	1,5	V	
r _T	T _j = 125 () °C		3,5	4,5	mΩ	
I _{RRM}	I _F = 150 A; T _j = 25 (125) °C		75 (110)		A	
Q _{rr}	di/dt = A/µs		20 (50)		μC	
E _{rr}	V _{GE} = V				mJ	
	characteristics					
R _{th(j-c)}	per IGBT			0,1	K/W	
R _{th(j-c)D}	per Inverse Diode			0,32	K/W	
R _{th(j-c)FD}	per FWD			0,21	K/W	
R _{th(c-s)}	per module			0,038	K/W	
Mechanical data						
M _s	to heatsink M6	3		5	Nm	
M _t	to terminals M6				Nm	
w				325	g	

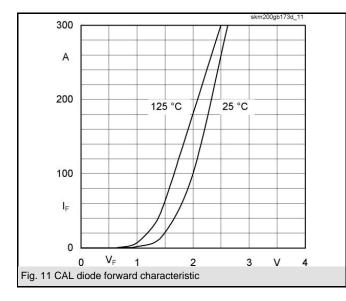

27-03-2006 RAA

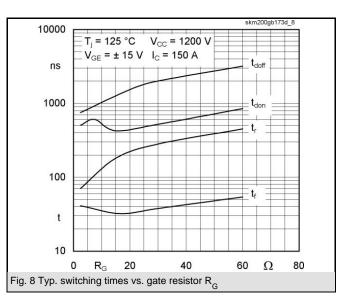

© by SEMIKRON

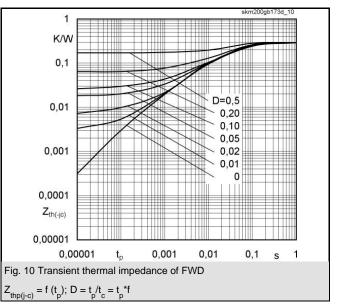


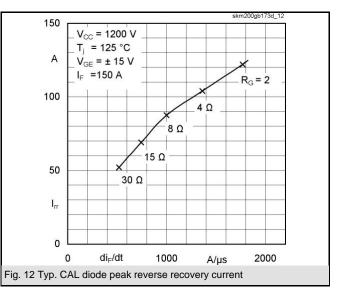


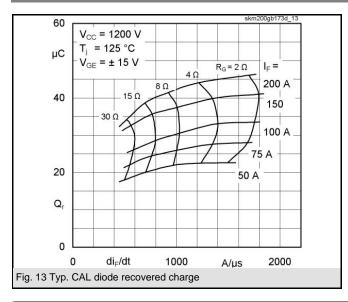


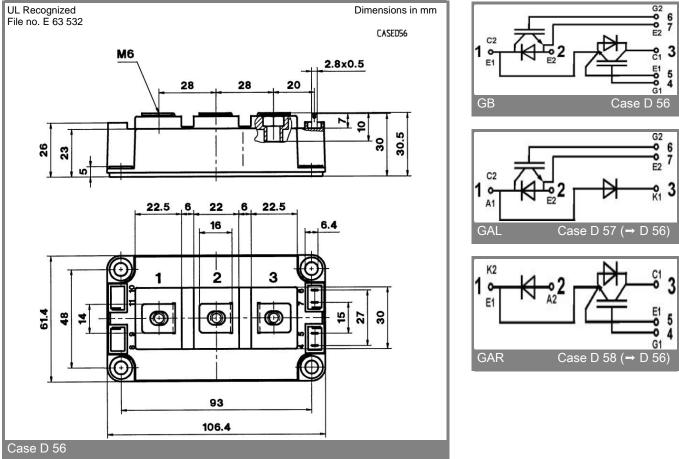



2


27-03-2006 RAA







3

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

Δ