

SEMITRANSTM 4

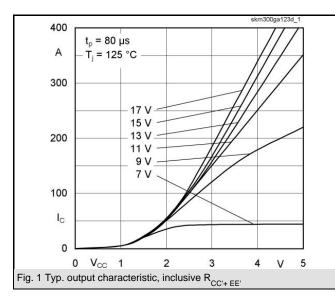
IGBT Modules

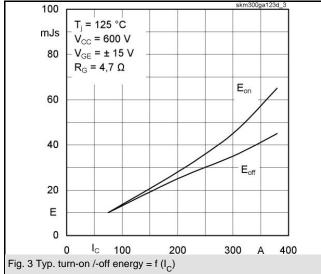
SKM 300GA123D

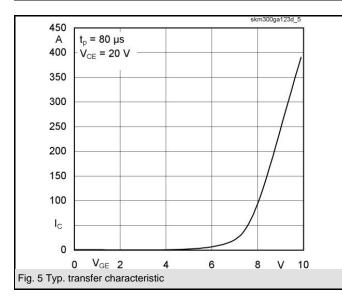
Features

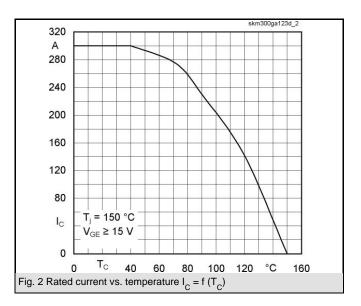
- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Cirect Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)

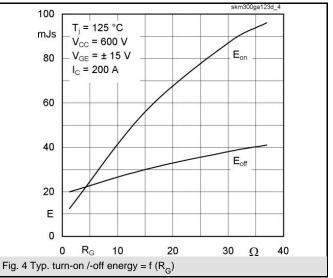
Typical Applications

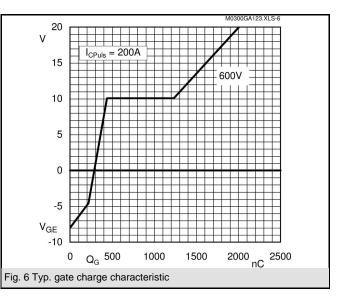

• Switching (not for linear use)

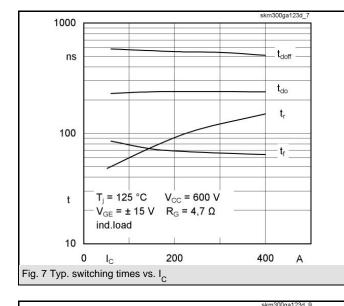

Absolute Maximum Ratings		T_c = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT								
V _{CES}		1200	V					
I _C	T _c = 25 (80) °C	300 (220)	Α					
ICRM	t _p = 1 ms	400	Α					
V _{GES}	F	± 20	V					
T _{vj} , (T _{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V _{isol}	AC, 1 min.	2500	V					
Inverse diode								
I _F	T _c = 25 (80) °C	300 (200)	Α					
I _{FRM}	$t_p = 1 \text{ ms}$	400	А					
I _{FSM}	t _p = 10 ms; sin.; T _j = 150 °C	2200	А					

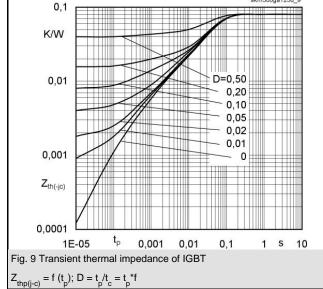

Characte	ristics	$\Gamma_c = 25 \text{ °C}$, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT								
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 8 \text{ mA}$	4,5	5,5	6,5	V			
ICES	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) \ ^{\circ}C$		0,1	0,3	mA			
V _{CE(TO)}	T _j = 25 (125) °C		1,4 (1,6)	,	V			
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		5,5 (7,5)	7 (9,5)	mΩ			
V _{CE(sat)}	I_{Cnom} = 200 A, V_{GE} = 15 V, chip level		2,5 (3,1)	3 (3,7)	V			
C _{ies}	under following conditions		15	19	nF			
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		2	2,6	nF			
C _{res}			1	1,3	nF			
L _{CE}				20	nH			
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,18 (0,22)		mΩ			
t _{d(on)}	V _{CC} = 600 V, I _{Cnom} = 200 A		250	400	ns			
tr	R _{Gon} = R _{Goff} = 4,7 Ω, T _j = 125 °C		90	160	ns			
t _{d(off)}	V _{GE} = ± 15 V		550	700	ns			
t _f			70	100	ns			
E_{on} (E_{off})			26 (22)		mJ			
Inverse diode								
$V_F = V_{EC}$	I _{Fnom} = 200 A; V _{GE} = 0 V; T _j = 25 (125) °C		2 (1,8)	2,5	V			
V _(TO)	T _i = 125 () °C			1,2	V			
r _T	T _j = 125 () °C		3	5,5	mΩ			
I _{RRM}	I _{Fnom} = 200 A; T _j = 25 (125) °C		80 (120)		Α			
Q _{rr}	di/dt = A/µs		11 (29)		μC			
E _{rr}	V _{GE} = 0 V				mJ			
Thermal characteristics								
R _{th(j-c)}	per IGBT			0,075	K/W			
R _{th(j-c)D}	per Inverse Diode			0,15	K/W			
R _{th(c-s)}	per module			0,038	K/W			
Mechanical data								
M _s	to heatsink M6	3		5	Nm			
M _t	to terminals M6 (M4)	2,5 (1,1)		5 (2)	Nm			
w				330	g			

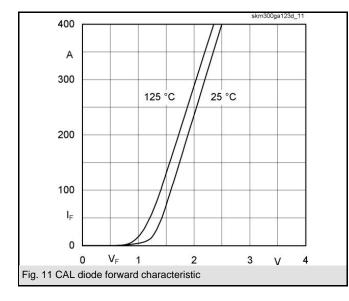


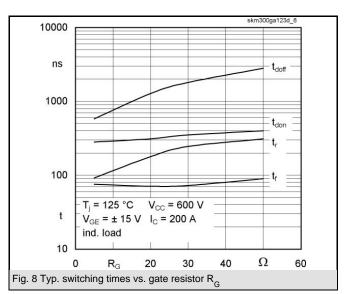

09-03-2006 RAA

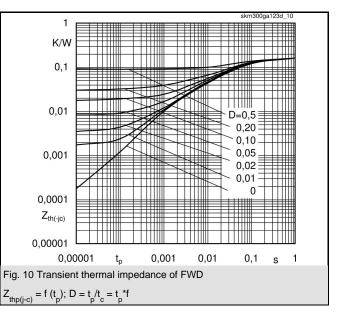


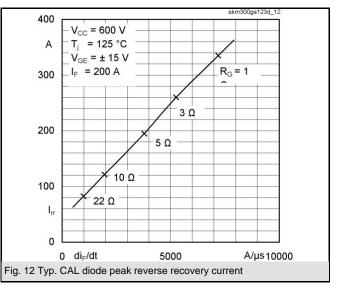


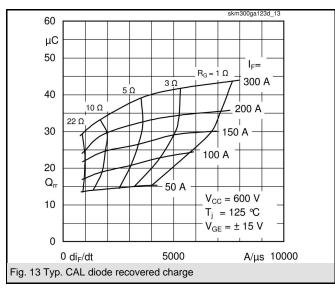


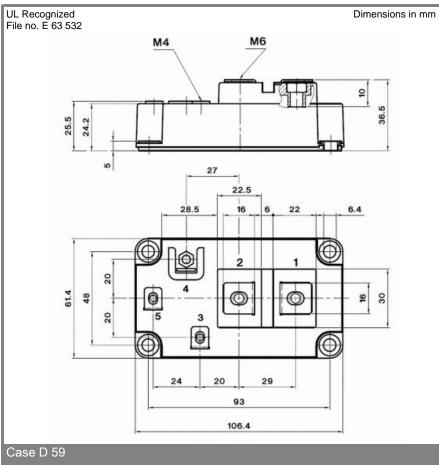





2







3

GA Case D 59

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

Δ