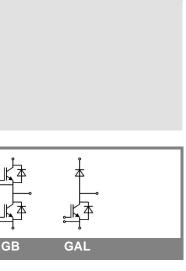


IGBT Modules


SKM 50GB123D SKM 50GAL123D

Features

- MOS input (voltage controlled)
- · Low inductance case
- Low tail current with low temperature dependence
- · High short circuit capability, self limiting to 6xI_{CNOM}
 • Fast and soft CAL diodes
- Isolated copper base plate using DCB (Direct Copper Bonding Technology)

Typical Applications*

- AC inverter drives
- Power supplies

Absolute Maximum Ratings T _c = 25 °C, unless otherwise specified					
Symbol	Conditions		Values	Units	
IGBT					
V_{CES}	T _j = 25 °C T _i = 150 °C		1200	V	
I _C	T _j = 150 °C	T _{case} = 25 °C	50	Α	
		T _{case} = 80 °C	40	Α	
I _{CRM}	I _{CRM} =2xI _{Cnom}		100	Α	
V_{GES}			± 20	V	
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs	
Inverse D	Diode				
I _F	T _j = 150 °C	T_{case} = 25 °C	50	Α	
		T _{case} = 80 °C	40	Α	
I _{FRM}	$I_{FRM} = 2xI_{Fnom}$		100	Α	
I _{FSM}	$t_p = 10 \text{ ms}; \sin.$	T _j = 150 °C	550	Α	
Freewhee	eling Diode				
I _F	T _j = 150 °C	T_{case} = 25 °C	50	Α	
		T _{case} = 80 °C	40	Α	
I _{FRM}	IFRM = 2xIFnom		100	Α	
I _{FSM}	$t_p = 10 \text{ ms; sin.}$	T _j = 150 °C	550	Α	
Module					
I _{t(RMS)}			200	Α	
T _{vj}			- 40+150	°C	
T _{stg}			125	°C	
V _{isol}	AC, 1 min.		2500	V	

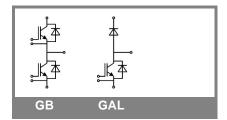
Characteristics $T_c =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C		0,1	0,3	mA
		T _j = 125 °C				mA
V_{CE0}		T _j = 25 °C		1	1,15	V
		T _j = 125 °C		0,9	1,05	V
r_{CE}	V _{GE} = 15 V	T _j = 25°C		30	37	mΩ
		T _j = 125°C		44	53	mΩ
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V			2,5	3	V
		$T_j = 125^{\circ}C_{chiplev.}$		3,1	3,7	V
C _{ies}				3,3		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,5		nF _
C _{res}				0,2		nF
Q_G	V _{GE} = -8V - +20V			500		nC
R_Gint	$T_j = {^{\circ}C}$			2,5		Ω
t _{d(on)}				70		ns
t _r	$R_{Gon} = 27 \Omega$	V _{CC} = 600V		60		ns
Ė _{on}	D = 27.0	I _C = 40A		7 400		mJ
$t_{d(off)}$ t_{f}	$R_{Goff} = 27 \Omega$	T _j = 125 °C		45		ns ns
F _{off}				4,5		mJ
	per IGBT			-,•	0,4	K/W
R _{th(j-c)}	per iob i				0,4	rv/VV

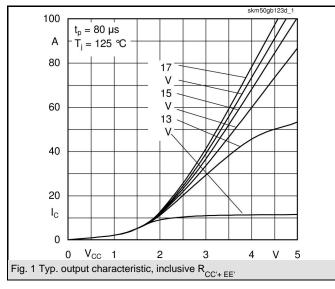
IGBT Modules

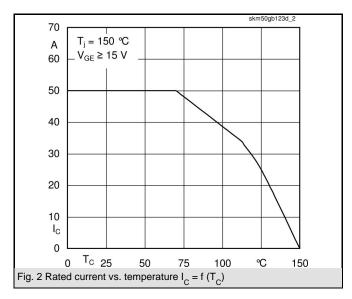
SKM 50GB123D SKM 50GAL123D

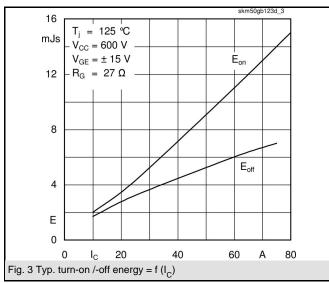
Features

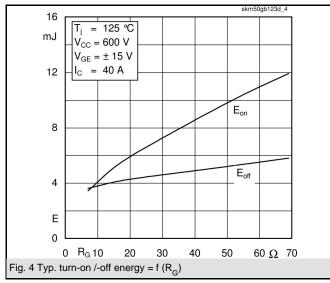
- MOS input (voltage controlled)
- Low inductance case
- Low tail current with low temperature dependence
- High short circuit capability, self limiting to 6xI_{CNOM}
- Fast and soft CAL diodes
- Isolated copper base plate using DCB (Direct Copper Bonding Technology)


Typical Applications*


- AC inverter drives
- Power supplies


Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D	iode					•
$V_F = V_{EC}$	$I_{Fnom} = 50 \text{ A}; V_{GE} = 0 \text{ V}$	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2	2,5	V
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,8		V
V_{F0}		T _j = 25 °C		1,1	1,2	V
		T _j = 125 °C				V
r _F		T _j = 25 °C		18	26	mΩ
		T _j = 125 °C			22	mΩ
I _{RRM}	I _F = 40 A	T _j = 125 °C		35		Α
Q _{rr}	di/dt = 800 A/µs			7		μC
E _{rr}	V _{cc} = 600V			2		mJ
$R_{th(j-c)}$	per diode				0,7	K/W
	eling Diode					
$V_F = V_{EC}$	$I_{Fnom} = 50 \text{ A}; V_{GE} = 0 \text{ V}$,		2	2,5	V
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$ $T_j = 25 ^{\circ}C$		1,8		V
V_{F0}				1,1	1,2	V
		T _j = 125 °C				V
r _F		T _j = 25 °C		18	26	V
		T _j = 125 °C				V
I _{RRM}	I _F = 40 A	T _j = 125 °C		35		A
Q _{rr}	di/dt = 800 A/μs			7		μC
E _{rr}	V _{cc} = 600V			2		mJ
$R_{th(j-c)}$	per diode				0,7	K/W
Module						
L _{CE}					30	nΗ
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,75		mΩ
		T _{case} = 125 °C		1		$m\Omega$
R _{th(c-s)}	per module				0,05	K/W
M_s	to heat sink M6		3		5	Nm
M_t	to terminals M5		2,5		5	Nm
w					160	g


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

