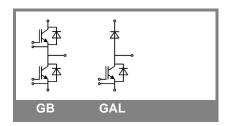


IGBT Modules


SKM 145GB123D SKM 145GAL123D

Features

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (10 mm) and creepage distances (20 mm)

Typical Applications*

- Switching (not for linear use)
- AC inverter drives

Absolute Maximum Ratings T _c = 25 °C, unless otherwise specified				
Symbol	Conditions		Values	Units
IGBT				_
V_{CES}	T _j = 25 °C T _i = 150 °C		1200	V
I _C	T _j = 150 °C	T _{case} = 25 °C	145	Α
		T _{case} = 80 °C	110	Α
I _{CRM}	I _{CRM} =2xI _{Cnom}		200	Α
V_{GES}			± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs
Inverse [Diode			
I _F	T _j = 150 °C	T_{case} = 25 °C	130	Α
		T _{case} = 80 °C	90	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}		200	Α
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	900	Α
Freewhe	eling Diode			
I _F	T _j = 150 °C	T_{case} = 25 °C	170	Α
		T _{case} = 80 °C	115	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}		300	Α
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	1440	Α
Module				
$I_{t(RMS)}$			200	Α
T _{vj}			- 40+ 150	°C
T _{stg}			- 40+ 125	°C
V _{isol}	AC, 1 min.		2500	V

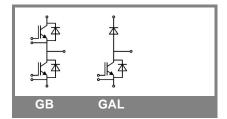
Characteristics T _c =			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT	•					
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 4 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C		0,1	0,3	mA
V_{CE0}		T _j = 25 °C		1,4	1,6	V
		T _j = 125 °C		1,6	1,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		11	14	mΩ
		T _j = 125°C		15	19	mΩ
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V	T _j = °C _{chiplev.}		2,5	3	V
C _{ies}				6,5	8,5	nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		1	1,5	nF
C _{res}				0,5	0,6	nF
Q_G	V _{GE} = -8V - +20V			1000		nC
R _{Gint}	T _j = °C			5		Ω
t _{d(on)}				160	320	ns
t _r	R_{Gon} = 6,8 Ω	V _{CC} = 600V		80	160	ns
E _{on}		I _C = 100A		16		mJ
t _{d(off)}	R_{Goff} = 6,8 Ω	T _j = 125 °C		400	520	ns
t_f		$V_{GE} = -15V$		70	100	ns
E_{off}				12		mJ
R _{th(j-c)}	per IGBT				0,15	K/W

IGBT Modules

SKM 145GB123D SKM 145GAL123D

Features

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (10 mm) and creepage distances (20 mm)

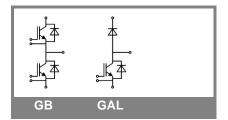

Typical Applications*

- Switching (not for linear use)
- · AC inverter drives

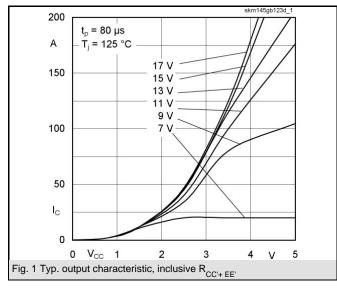
Characteristics						
Symbol	Conditions		min.	typ.	max.	Units
Inverse D						
$V_F = V_{EC}$	I _{Fnom} = 100 A; V _{GE} = 0 V			2	2,5	V
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$ $T_j = 25 ^{\circ}C$		1,8		V
V _{F0}				1,1	1,4	V
		T _j = 125 °C				V
r _F		T _j = 25 °C		9	11	mΩ
		T _j = 125 °C				mΩ
I _{RRM}	I _F = 100 A	T _j = 25 °C		35		A
Q _{rr}	di/dt = 1000 A/µs			5		μC
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V					mJ
R _{th(j-c)D}	per diode				0,36	K/W
	ling Diode	T 05.00			0.5	1
$V_F = V_{EC}$	$I_{Fnom} = 150 \text{ A}; V_{GE} = 0 \text{ V}$			2	2,5	V
		$T_j = 125 ^{\circ}C_{chiplev}$		1,8		V
V_{F0}		T _j = 25 °C		1,1	1,4	V
		T _j = 125 °C			- 44	V
r _F		T _j = 25 °C		9	11	V
	1. 450 4	T _j = 125 °C				V
I_{RRM} Q_{rr}	I _F = 150 A	T _j = 25 °C		55 8		μC
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V			Ü		mJ
					0.0	
R _{th(j-c)FD}	per diode				0,3	K/W
Module	Ì	i				1
L _{CE}					30	nH
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,75		mΩ
		T _{case} = 125 °C		1		mΩ
R _{th(c-s)}	per module				0,05	K/W
M_s	to heat sink M6		3		5	Nm
M _t	to terminals M5		2,5		5	Nm
w					160	g

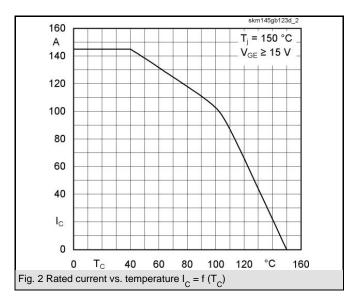
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

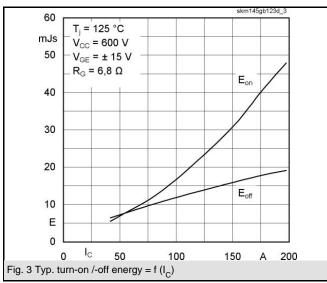
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

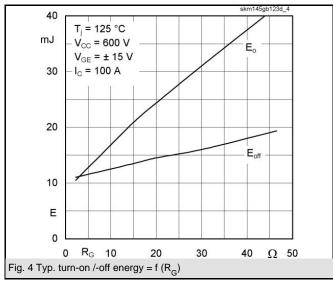

IGBT Modules

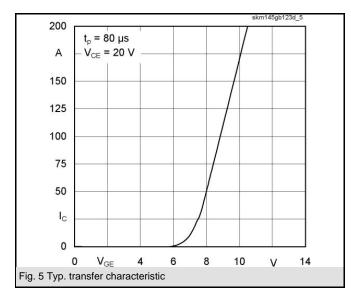
SKM 145GB123D SKM 145GAL123D


- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (10 mm) and creepage distances (20 mm)


Typical Applications*


- Switching (not for linear use)
- AC inverter drives




Z _{th}						
Symbol	Conditions	Values	Units			
·						
Z _{Ri}	i = 1	100	mk/W			
R_i	i = 2	38	mk/W			
R_i	i = 3	10	mk/W			
R_{i}	i = 4	2	mk/W			
tau _i	i = 1	0,03	s			
tau _i	i = 2	0,0287	s			
tau _i	i = 3	0,0012	s			
tau _i	i = 4	0,0002	s			
Z R _i th(j-c)D						
R _i	i = 1	240	mk/W			
R_i	i = 2	95	mk/W			
R_{i}	i = 3	22	mk/W			
R_{i}	i = 4	3	mk/W			
tau _i	i = 1	0,054	s			
tau _i	i = 2	0,0113	s			
tau _i	i = 3	0,0012	s			
tau _i	i = 4	0,005	s			

