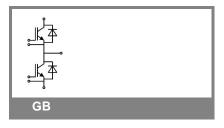


SEMITRANS[®] 3

Trench IGBT Module

SKM 300GB126D


Features

- Trench = Trenchgate technology
 V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

Typical Applications*

- Electronic welders
- AC inverter drives
- UPS

Absolute	25 °C, unless otherwise specified					
Symbol	Conditions			Values		Units
IGBT						
V _{CES}	T _i = 25 °C			1200		V
I _C	$T_j = 25 °C$ $T_j = 150 °C$	T _{case} = 25 °C		310		А
		T _{case} = 80 °C		200		А
I _{CRM}	I _{CRM} =2xI _{Cnom}			400		А
V _{GES}				± 20		V
t _{psc}	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 600 \; V; \; V_{GE} \leq 20 \; V; \\ V_{CES} < 1200 \; V \end{array}$	T _j = 125 °C		10		μs
Inverse I	Diode					
I _F	T _j = 150 °C	T _{case} = 25 °C	250			А
		T _{case} = 80 °C		170		А
I _{FRM}	I _{FRM} =2xI _{Fnom}			400		А
Module						
I _{t(RMS)}				500		А
T _{vj}			- 40 + 150			°C
T _{stg}			-40+125			°C
V _{isol}	AC, 1 min.		4000			V
ISOI	, , , , , , , , , , , , , , , , , , ,					
Characte	eristics	T _c =	25 °C, ur	less oth	erwise sp	pecified
Symbol	Conditions	0	min.	typ.	max.	Units
IGBT				-71		1
V _{GE(th)}	V _{GE} = V _{CE} , I _C = 8 mA		5	5,8	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _i = 25 °C		0,1	0,3	mA
V _{CE0}		T _j = 25 °C T _j = 25 °C		1	1,2	V
				0,9	1,1	V
r _{CE}	V _{GE} = 15 V	$T_j = 125 \text{ °C}$ $T_j = 25 \text{ °C}$		3,5	4,7	mΩ
		T _j = 125°C		5,5	6,8	mΩ
V _{CE(sat)}	I _{Cnom} = 200 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,7	2,15	V
		T _j = 125°C _{chiplev.}		2	2,45	V
C _{ies}	N 05 N 0 N	6 (N N I		15		nF
C _{oes}	V _{CE} = 25, V _{GE} = 0 V	f = 1 MHz		1,2		nF
C _{res}				1,1		nF
Q _G	V _{GE} = -8V - +20V			1800		nC
R _{Gint}	T _j = 25 °C	T		3,8		Ω
t _{d(on)}	D = 150	V - 600V		280		ns
t _r	R _{Gon} = 1,5 Ω	V _{CC} = 600V I _C = 200A		37 21		ns mJ
F			1			
E _{on}	R _{Goff} = 1,5 Ω	T _i = 125 °C		560		ns
t _{d(off)}	R_{Goff} = 1,5 Ω	T _j = 125 °C V _{GE} = ± 15V		560 100		ns
E _{on} t _{d(off)}	R _{Goff} = 1,5 Ω	T _j = 125 °C V _{GE} = ± 15V				

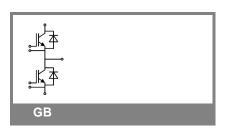
SEMITRANS[®] 3

Trench IGBT Module

SKM 300GB126D

Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse d	iode						
$V_F = V_{EC}$	I_{Fnom} = 200 A; V_{GE} = 0 V			1,6	1,8	V	
		T _j = 125 °C _{chiplev.}		1,6	1,8	V	
V _{F0}		T _j = 25 °C		1	1,1	V	
		T _j = 125 °C		0,8	0,9	V	
r _F		T _j = 25 °C		3	3,5	mΩ	
		T _j = 125 °C		4	4,5	mΩ	
I _{RRM}	I _F = 200 A	T _i = 125 °C		290		Α	
Q _{rr}	di/dt = 6200 A/µs	,		44		μC	
E _{rr}	V_{GE} = -15 V; V_{CC} = 600 V			18		mJ	
R _{th(j-c)D}	per diode				0,25	K/W	
Module							
L _{CE}				15	20	nH	
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ	
		T _{case} = 125 °C		0,5		mΩ	
R _{th(c-s)}	per module				0,038	K/W	
M _s	to heat sink M6		3		5	Nm	
M _t	to terminals M6		2,5		5	Nm	
w					325	g	

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

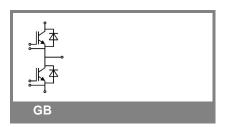
Typical Applications*

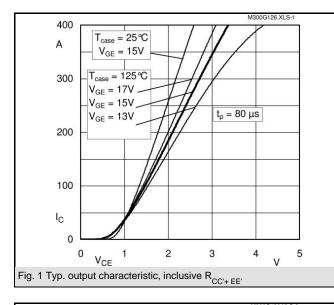
- Electronic welders
- AC inverter drives
- UPS

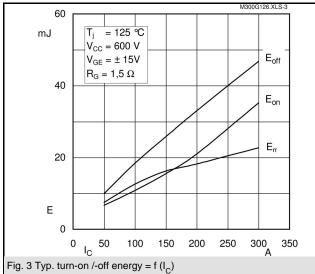
SEMITRANS[®] 3

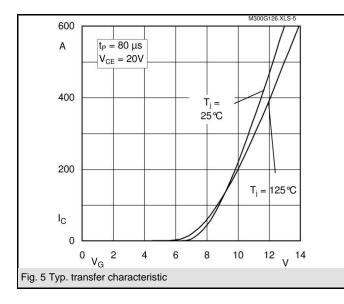
SKM 300GB126D

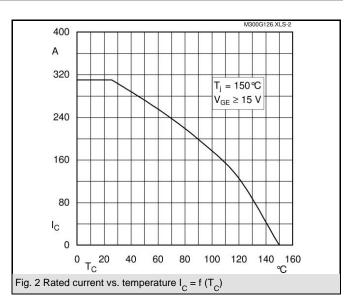
Trench IGBT Module

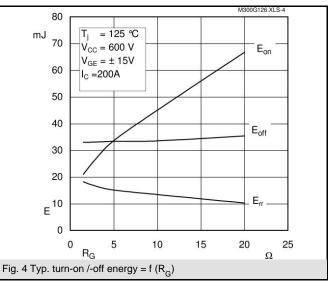

Z _{th}			
Symbol	Conditions	Values	Units
			•
Z_{th(j-c)l} R _i R _i	i = 1	80	mk/W
R _i	i = 2	30	mk/W
R _i	i = 3	8,5	mk/W
R _i	i = 4	1,5	mk/W
tau	i = 1	0,0576	s
tau	i = 2	0,01	s
tau	i = 3	0,002	s
tau _i	i = 4	0,0002	s
Ζ			
Z Ri	i = 1	150	mk/W
R _i	i = 2	75	mk/W
R _i	i = 3	22	mk/W
R _i	i = 4	3	mk/W
taui	i = 1	0,0331	s
tau _i	i = 2	0,0113	s
tau _i	i = 3	0,0012	s
tau _i	i = 4	0,001	s

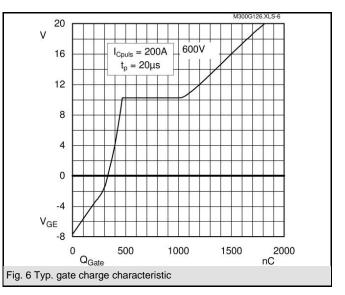

Features

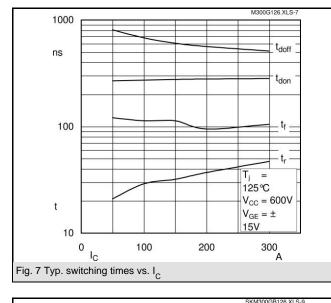

- Trench = Trenchgate technology
 V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

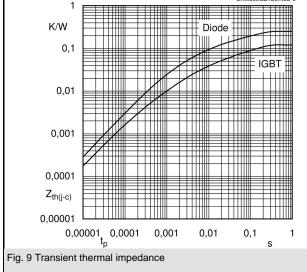

Typical Applications*

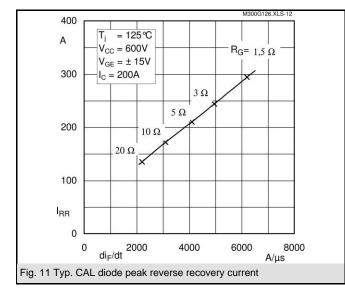

- Electronic welders
- AC inverter drives
- UPS

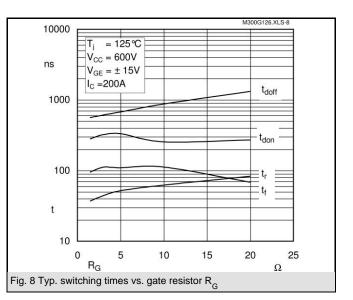


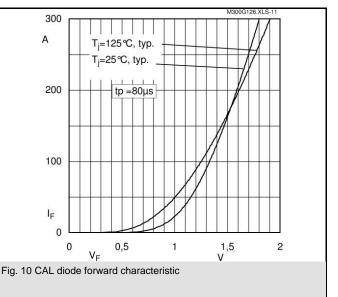


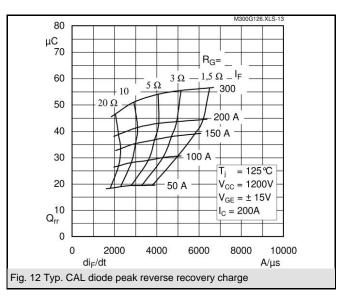


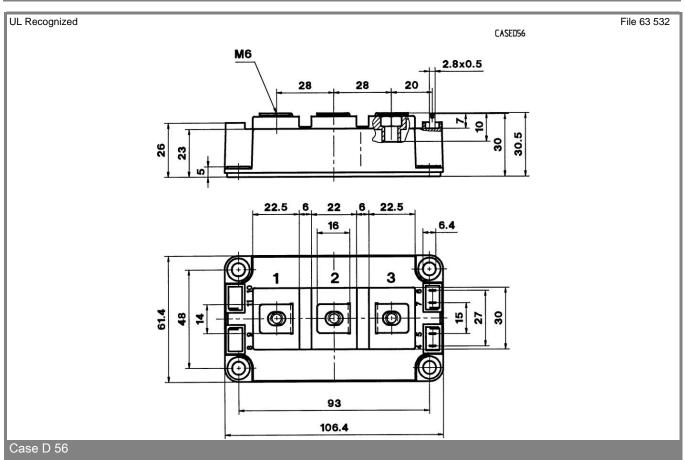


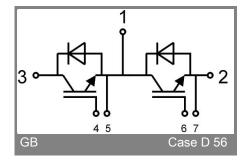












06-10-2009 NOS

© by SEMIKRON

Downloaded from Elcodis.com electronic components distributor