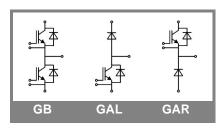


IGBT Modules


SKM 75GB123D SKM 75GAL123D **SKM 75GAR123D**

Features

- MOS input (voltage controlled)
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
 Fast & soft inverse CAL diodes
- . Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (10 mm) and creepage distance (20 mm)

Typical Applications*

- AC inverter drives
- UPS

Absolute Maximum Ratings T _c = 25 °C, unless otherwise specif				specified
Symbol	Conditions		Values	Units
IGBT				
V_{CES}	T _j = 25 °C T _i = 150 °C		1200	V
I _C	T _j = 150 °C	T _{case} = 25 °C	75	Α
		T _{case} = 80 °C	60	Α
I _{CRM}	I _{CRM} =2xI _{Cnom}		150	Α
V_{GES}			± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs
Inverse D	Diode			
I _F	T _j = 150 °C	T _{case} = 25 °C	75	Α
		T _{case} = 80 °C	50	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}		150	Α
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	480	Α
Freewhee	eling Diode			
I _F	T _j = 150 °C	T_{case} = 25 °C	95	Α
		T _{case} = 80 °C	65	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}		200	Α
I _{FSM}	t _p = 10 ms; sin	T _j = 150 °C	720	Α
Module				
I _{t(RMS)}			200	Α
T _{vj}			- 40+ 150	°C
T _{stg}			- 40+ 125	°C
V _{isol}	AC, 1 min.		2500	V

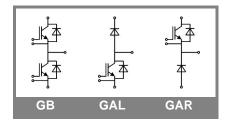
Characte	ristics	T _c =	T _c = 25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,1	0,3	mA
V _{CE0}		T _j = 25 °C		1,4	1,6	V
		T _j = 125 °C		1,6	1,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		22	28	mΩ
		T _j = 125°C		30	38	mΩ
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V	T _j = °C _{chiplev.}		2,5	3	V
C _{ies}				3,3	4,3	nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,5	0,6	nF
C _{res}				0,22	0,3	nF
Q_G	V _{GE} = -8 - +20V			500		nC
R _{Gint}	T _j = °C			5		Ω
t _{d(on)}				44	100	ns
Ţ,	$R_{Gon} = 22 \Omega$	$V_{CC} = 600V$		56	100	ns
Ėon		I _C = 50A		8		mJ
t _{d(off)}	R_{Goff} = 22 Ω	T _j = 125 °C		380	500	ns
t _f		$V_{GE} = \pm 15V$		70	100	ns
E_{off}				5		mJ
R _{th(j-c)}	per IGBT				0,27	K/W

IGBT Modules

SKM 75GB123D SKM 75GAL123D SKM 75GAR123D

Features

- MOS input (voltage controlled)
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- · Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (10 mm) and creepage distance (20 mm)


Typical Applications*

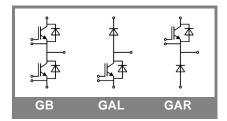
- AC inverter drives
- UPS

Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
	Inverse Diode							
$V_F = V_{EC}$	$I_{Fnom} = 50 \text{ A}; V_{GE} = 0 \text{ V}$	•		2	2,5	V		
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,8		V		
V_{F0}		T _j = 25 °C		1,1	1,2	V		
		T _j = 125 °C				V		
r _F		T _j = 25 °C		18	26	mΩ		
		T _j = 125 °C				mΩ		
I _{RRM}	I _F = 50 A	T _j = 125 °C		35		Α		
Q _{rr}	di/dt = 800 A/µs					μC		
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V					mJ		
R _{th(j-c)D}	per diode				0,6	K/W		
Freewhee	eling Diode							
$V_F = V_{EC}$	I _{Fnom} = 50 A; V _{GE} = 0 V			1,85	2,2	V		
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,6		V		
V_{F0}		T _j = 25 °C		1,1	1,2	V		
		T _j = 125 °C				V		
r _F		T _j = 25 °C		15	20	V		
		T _j = 125 °C				V		
I _{RRM}	I _F = 50 A	T _j = 125 °C		40		A		
Q _{rr}	.,,					μC		
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V					mJ		
$R_{\text{th(j-c)FD}}$	per diode				0,5	K/W		
Module								
L _{CE}					30	nΗ		
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,75		mΩ		
		T _{case} = 125 °C		1		mΩ		
R _{th(c-s)}	per module				0,05	K/W		
M _s	to heat sink M6		3		5	Nm		
M_t	to terminals M5		2,5		5	Nm		
w					160	g		

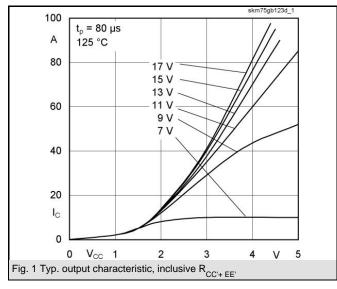
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

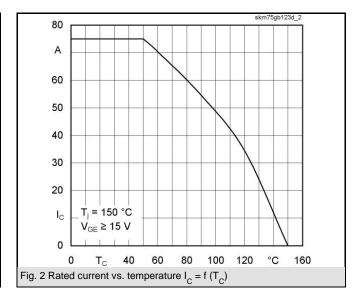
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

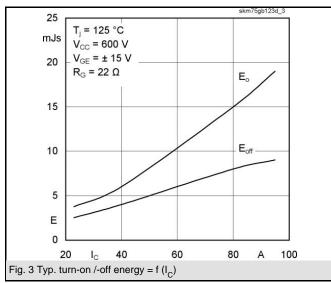
IGBT Modules

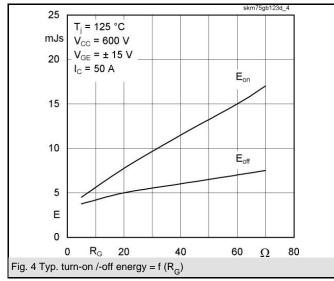

SKM 75GB123D SKM 75GAL123D **SKM 75GAR123D**

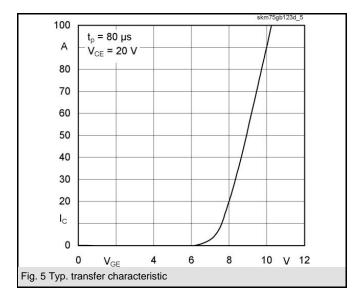
Features


- MOS input (voltage controlled)
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
 Fast & soft inverse CAL diodes
- . Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (10 mm) and creepage distance (20 mm)


Typical Applications*


- AC inverter drives
- UPS




Z _{th}							
Symbol	Conditions	Values	Units				
Z ₁₁₋₍₁₋₂₎							
Z _{Ri}	i = 1	180	mk/W				
R _i	i = 2	64	mk/W				
R_i	i = 3	22	mk/W				
R_{i}	i = 4	4	mk/W				
tau _i	i = 1	0,0327	s				
tau _i	i = 2	0,0479	s				
tau _i	i = 3	0,008	s				
tau _i	i = 4	0,005	s				
Z,,,,,,,,,,	Z >>						
Z R _i th(j-c)D	i = 1	380	mk/W				
R_{i}	i = 2	190	mk/W				
R_i	i = 3	26	mk/W				
R_{i}	i = 4	4	mk/W				
tau _i	i = 1	0,0947	s				
tau _i	i = 2	0,006	s				
tau _i	i = 3	0,08	s				
tau _i	i = 4	0,003	s				

