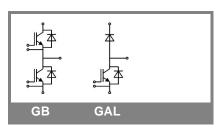


## Trench IGBT Modules


### SKM 200GB176D SKM 200GAL176D

#### **Features**

- Homogeneous Si
- Trench = Trenchgate technology
- V<sub>CEsat</sub> with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I<sub>c</sub>

### **Typical Applications\***

- AC inverter drives mains 575 -750 V AC
- Public transport (auxiliary syst.)



| Absolute            | Maximum Ratings                                   | T,                        | <sub>c</sub> = 25 °C, unless otherwise sp | ecified |  |  |
|---------------------|---------------------------------------------------|---------------------------|-------------------------------------------|---------|--|--|
| Symbol              | Conditions                                        |                           | Values                                    | Units   |  |  |
| IGBT                |                                                   |                           |                                           |         |  |  |
| $V_{CES}$           | T <sub>j</sub> = 25 °C<br>T <sub>i</sub> = 150 °C |                           | 1700                                      | V       |  |  |
| I <sub>C</sub>      | T <sub>j</sub> = 150 °C                           | T <sub>c</sub> = 25 °C    | 260                                       | Α       |  |  |
|                     |                                                   | T <sub>c</sub> = 80 °C    | 180                                       | Α       |  |  |
| I <sub>CRM</sub>    | I <sub>CRM</sub> =2xI <sub>Cnom</sub>             |                           | 300                                       | Α       |  |  |
| $V_{GES}$           |                                                   |                           | ± 20                                      | V       |  |  |
| t <sub>psc</sub>    | $V_{CC}$ = 1200 V; $V_{GE} \le 20$ V;             | T <sub>j</sub> = 125 °C   | 10                                        | μs      |  |  |
|                     | V <sub>CES</sub> < 1700 V                         |                           |                                           |         |  |  |
| Inverse [           |                                                   |                           |                                           |         |  |  |
| I <sub>F</sub>      | T <sub>j</sub> = 150 °C                           | $T_c = 25 ^{\circ}C$      | 210                                       | Α       |  |  |
|                     |                                                   | T <sub>c</sub> = 80 °C    | 140                                       | Α       |  |  |
| I <sub>FRM</sub>    | I <sub>FRM</sub> =2xI <sub>Fnom</sub>             |                           | 300                                       | Α       |  |  |
| I <sub>FSM</sub>    | $t_p = 10 \text{ ms; sin.}$                       | T <sub>j</sub> = 150 °C   | 1100                                      | Α       |  |  |
| Freewheeling Diode  |                                                   |                           |                                           |         |  |  |
| I <sub>F</sub>      | T <sub>j</sub> = 150 °C                           | $T_{case}$ = 25 °C        | 210                                       | Α       |  |  |
|                     |                                                   | T <sub>case</sub> = 80 °C | 140                                       | Α       |  |  |
| I <sub>FRM</sub>    | I <sub>FRM</sub> =2xI <sub>Fnom</sub>             |                           | 300                                       | Α       |  |  |
| I <sub>FSM</sub>    | t <sub>p</sub> = 10 ms; sin.                      | T <sub>j</sub> = 150 °C   | 1100                                      | Α       |  |  |
| Module              |                                                   |                           | ·                                         | •       |  |  |
| I <sub>t(RMS)</sub> |                                                   |                           | 500                                       | Α       |  |  |
| T <sub>vj</sub>     |                                                   |                           | - 40 + 150                                | °C      |  |  |
| T <sub>stg</sub>    |                                                   |                           | -40+125                                   | °C      |  |  |
| V <sub>isol</sub>   | AC, 1 min.                                        |                           | 4000                                      | V       |  |  |

| Characteristics T <sub>c</sub> = |                                                   | 25 °C, unless otherwise specified                  |      |            |      |           |
|----------------------------------|---------------------------------------------------|----------------------------------------------------|------|------------|------|-----------|
| Symbol                           | Conditions                                        |                                                    | min. | typ.       | max. | Units     |
| IGBT                             | -                                                 |                                                    |      |            |      |           |
| $V_{GE(th)}$                     | $V_{GE} = V_{CE}$ , $I_{C} = 6 \text{ mA}$        |                                                    | 5,2  | 5,8        | 6,4  | V         |
| I <sub>CES</sub>                 | $V_{GE} = 0 V, V_{CE} = V_{CES}$                  | T <sub>j</sub> = 25 °C                             |      |            | 3    | mA        |
| $V_{CE0}$                        |                                                   | T <sub>j</sub> = 25 °C                             |      | 1          | 1,2  | V         |
|                                  |                                                   | T <sub>j</sub> = 125 °C                            |      | 0,9        | 1,1  | V         |
| r <sub>CE</sub>                  | V <sub>GE</sub> = 15 V                            | T <sub>j</sub> = 25°C                              |      | 6,7        | 8,3  | mΩ        |
|                                  |                                                   | T <sub>j</sub> = 125°C                             |      | 10         | 12   | $m\Omega$ |
| V <sub>CE(sat)</sub>             | I <sub>Cnom</sub> = 150 A, V <sub>GE</sub> = 15 V | T <sub>j</sub> = 25°C <sub>chiplev.</sub>          |      | 2          | 2,45 | V         |
|                                  |                                                   | T <sub>j</sub> = 125°C <sub>chiplev</sub> .        |      | 2,4        | 2,9  | V         |
| C <sub>ies</sub>                 |                                                   |                                                    |      | 11,4       |      | nF        |
| C <sub>oes</sub>                 | $V_{CE} = 25, V_{GE} = 0 V$                       | f = 1 MHz                                          |      | 0,55       |      | nF        |
| C <sub>res</sub>                 |                                                   |                                                    |      | 0,44       |      | nF        |
| $Q_G$                            | V <sub>GE</sub> = -8V+15V                         |                                                    |      | 1200       |      | nC        |
| R <sub>Gint</sub>                | T <sub>j</sub> = 25 °C                            |                                                    |      | 4,25       |      | Ω         |
| t <sub>d(on)</sub>               |                                                   |                                                    |      | 360        |      | ns        |
| t <sub>r</sub>                   | $R_{Gon} = 5 \Omega$                              | V <sub>CC</sub> = 1200V                            |      | 45         |      | ns        |
| E <sub>on</sub>                  | D - 5 O                                           | I <sub>C</sub> = 150A                              |      | 93<br>760  |      | mJ        |
| $t_{ m d(off)} \ t_{ m f}$       | $R_{Goff} = 5 \Omega$                             | T <sub>j</sub> = 125 °C<br>V <sub>GE</sub> = ± 15V |      | 760<br>140 |      | ns<br>ns  |
| Կ<br>E <sub>off</sub>            |                                                   | GE 1.00                                            |      | 58         |      | mJ        |
|                                  | per IGBT                                          | 1                                                  |      |            | 0,12 | K/W       |
| $R_{\text{th(j-c)}}$             | heriggi                                           |                                                    |      |            | 0,12 | rv/ v v   |

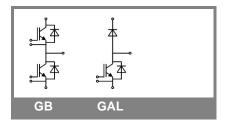


### Trench IGBT Modules

### SKM 200GB176D SKM 200GAL176D

#### **Features**

- Homogeneous Si
- Trench = Trenchgate technology
- V<sub>CEsat</sub> with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I<sub>c</sub>


#### Typical Applications\*

- AC inverter drives mains 575 -750 V AC
- Public transport (auxiliary syst.)

| Characteristics        |                                                   |                                                                               |      |      |       |       |  |
|------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|------|------|-------|-------|--|
| Symbol                 | Conditions                                        |                                                                               | min. | typ. | max.  | Units |  |
| Inverse Diode          |                                                   |                                                                               |      |      |       |       |  |
| $V_F = V_{EC}$         | I <sub>Fnom</sub> = 150 A; V <sub>GE</sub> = 0 V  |                                                                               |      | 1,7  | 1,9   | V     |  |
|                        |                                                   | $T_j = 125  ^{\circ}C_{\text{chiplev.}}$                                      |      | 1,7  | 1,9   | V     |  |
| $V_{F0}$               |                                                   | $T_j = 125 ^{\circ}\text{C}_{\text{chiplev.}}$ $T_j = 25 ^{\circ}\text{C}$    |      | 1,1  | 1,3   | V     |  |
|                        |                                                   | T <sub>j</sub> = 125 °C                                                       |      | 0,9  | 1,1   | V     |  |
| r <sub>F</sub>         |                                                   | T <sub>j</sub> = 25 °C                                                        |      | 4    | 4     | mΩ    |  |
|                        |                                                   | T <sub>j</sub> = 125 °C                                                       |      | 5,3  | 5,3   | mΩ    |  |
| I <sub>RRM</sub>       | I <sub>F</sub> = 150 A                            | T <sub>j</sub> = 125 °C                                                       |      | 195  |       | Α     |  |
| $Q_{rr}$               | di/dt = 3700 A/µs                                 |                                                                               |      | 52   |       | μC    |  |
| E <sub>rr</sub>        | V <sub>GE</sub> = -15 V; V <sub>CC</sub> = 1200 \ | /                                                                             |      | 31   |       | mJ    |  |
| R <sub>th(j-c)D</sub>  | per diode                                         |                                                                               |      |      | 0,25  | K/W   |  |
| FWD                    |                                                   |                                                                               |      |      |       | •     |  |
| $V_F = V_{EC}$         | I <sub>Fnom</sub> = 150 A; V <sub>GE</sub> = 0 V  | $T_j = 25  ^{\circ}C_{\text{chiplev.}}$                                       |      | 1,7  | 1,9   | V     |  |
|                        |                                                   | $T_j = 125 ^{\circ}\text{C}_{\text{chiplev.}}$<br>$T_j = 25 ^{\circ}\text{C}$ |      | 1,7  | 1,9   | V     |  |
| V <sub>F0</sub>        |                                                   |                                                                               |      | 1,1  | 1,3   | V     |  |
|                        |                                                   | $T_j = 125 ^{\circ}\text{C}$<br>$T_j = 25 ^{\circ}\text{C}$                   |      | 0,9  | 1,1   | V     |  |
| r <sub>F</sub>         |                                                   |                                                                               |      | 4    | 4     | V     |  |
|                        |                                                   | T <sub>j</sub> = 125 °C<br>T <sub>j</sub> = 125 °C                            |      | 5,3  | 5,3   | V     |  |
| I <sub>RRM</sub>       | I <sub>F</sub> = 150 A                            | T <sub>j</sub> = 125 °C                                                       |      | 195  |       | Α     |  |
| $Q_{rr}$               | di/dt = 3700 A/μs                                 |                                                                               |      | 52   |       | μC    |  |
| E <sub>rr</sub>        | V <sub>GE</sub> = -15 V; V <sub>CC</sub> = 1200 \ | /                                                                             |      | 31   |       | mJ    |  |
| $R_{\text{th(j-c)FD}}$ | per diode                                         |                                                                               |      |      | 0,25  | K/W   |  |
| Module                 |                                                   |                                                                               |      |      |       |       |  |
| L <sub>CE</sub>        |                                                   |                                                                               |      | 15   | 20    | nΗ    |  |
| R <sub>CC'+EE'</sub>   | res., terminal-chip                               | T <sub>case</sub> = 25 °C                                                     |      | 0,35 |       | mΩ    |  |
|                        |                                                   | T <sub>case</sub> = 125 °C                                                    |      | 0,5  |       | mΩ    |  |
| R <sub>th(c-s)</sub>   | per module                                        |                                                                               |      |      | 0,038 | K/W   |  |
| M <sub>s</sub>         | to heat sink M6                                   |                                                                               | 3    |      | 5     | Nm    |  |
| M <sub>t</sub>         | to terminals M6                                   |                                                                               | 2,5  |      | 5     | Nm    |  |
| w                      |                                                   |                                                                               |      |      | 325   | g     |  |

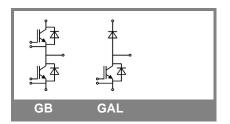
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

\* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

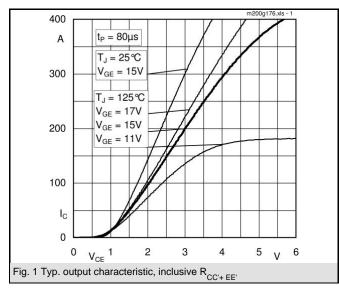


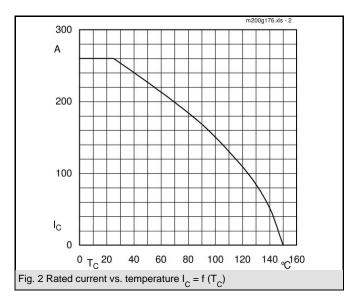


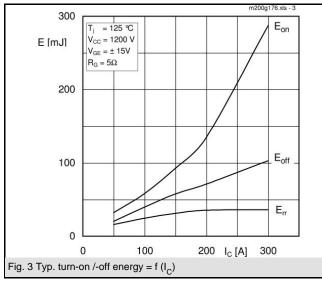
## Trench IGBT Modules

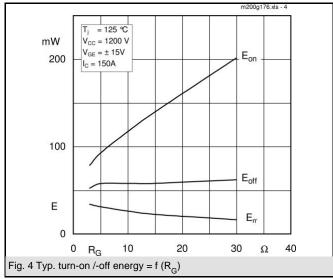

SKM 200GB176D SKM 200GAL176D

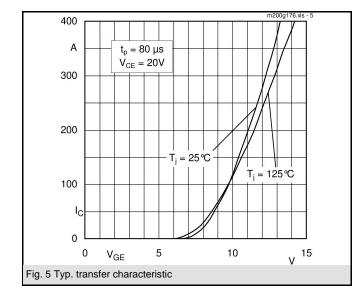
#### **Features**


- Homogeneous Si
- Trench = Trenchgate technology
- V<sub>CEsat</sub> with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I<sub>c</sub>


### **Typical Applications\***


- AC inverter drives mains 575 -750 V AC
- Public transport (auxiliary syst.)





| Z <sub>th</sub>                        |            |        |       |  |  |
|----------------------------------------|------------|--------|-------|--|--|
| Symbol                                 | Conditions | Values | Units |  |  |
|                                        |            |        |       |  |  |
| Z<br>th(j-c)l<br>R <sub>i</sub>        | i = 1      | 80     | mk/W  |  |  |
| R <sub>i</sub>                         | i = 2      | 30     | mk/W  |  |  |
| $R_i$                                  | i = 3      | 8,2    | mk/W  |  |  |
| $R_i$                                  | i = 4      | 1,8    | mk/W  |  |  |
| tau <sub>i</sub>                       | i = 1      | 0,0753 | s     |  |  |
| tau <sub>i</sub>                       | i = 2      | 0,01   | s     |  |  |
| tau <sub>i</sub>                       | i = 3      | 0,0008 | S     |  |  |
| tau <sub>i</sub>                       | i = 4      | 0,0003 | s     |  |  |
| Z,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |            |        |       |  |  |
| Z<br>R <sub>i</sub> th(j-c)D           | i = 1      | 160    | mk/W  |  |  |
| R <sub>i</sub>                         | i = 2      | 67     | mk/W  |  |  |
| $R_{i}$                                | i = 3      | 20     | mk/W  |  |  |
| R <sub>i</sub>                         | i = 4      | 3      | mk/W  |  |  |
| tau <sub>i</sub>                       | i = 1      | 0,0382 | s     |  |  |
| tau <sub>i</sub>                       | i = 2      | 0,009  | s     |  |  |
| tau <sub>i</sub>                       | i = 3      | 0,0009 | s     |  |  |
| tau <sub>i</sub>                       | i = 4      | 0,005  | s     |  |  |

