

## Trench IGBT Modules

#### **SKM 100GB176D**

#### **Features**

- Homogeneous Si
- Trench = Trenchgate technology
- V<sub>CE(sat)</sub> with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I<sub>C</sub>

## **Typical Applications\***

- AC inverter drives mains 575 -750 V AC
- Public transport (auxiliary syst.

| <b>Absolute Maximum Ratings</b> $T_{case} = 25^{\circ}C$ , unless otherwise specified |                                       |                         |                   |       |  |
|---------------------------------------------------------------------------------------|---------------------------------------|-------------------------|-------------------|-------|--|
| Symbol                                                                                | Conditions                            |                         | Values            | Units |  |
| IGBT                                                                                  | •                                     |                         |                   |       |  |
| $V_{CES}$                                                                             | T <sub>j</sub> = 25 °C                |                         | 1700              | V     |  |
| I <sub>C</sub>                                                                        | T <sub>j</sub> = 150 °C               | T <sub>c</sub> = 25 °C  | 125               | Α     |  |
|                                                                                       |                                       | T <sub>c</sub> = 80 °C  | 90                | Α     |  |
| I <sub>CRM</sub>                                                                      | I <sub>CRM</sub> =2xI <sub>Cnom</sub> |                         | 150               | Α     |  |
| $V_{GES}$                                                                             |                                       |                         | ± 20              | V     |  |
| t <sub>psc</sub>                                                                      | $V_{CC}$ = 1200 V; $V_{GE} \le 20$ V; | T <sub>j</sub> = 125 °C | 10                | μs    |  |
|                                                                                       | V <sub>CES</sub> < 1700 V             | •                       |                   |       |  |
| Inverse I                                                                             | Diode                                 |                         |                   |       |  |
| I <sub>F</sub>                                                                        | T <sub>j</sub> = 150 °C               | $T_c = 25 ^{\circ}C$    | 100               | Α     |  |
|                                                                                       |                                       | $T_c = 80  ^{\circ}C$   | 70                | Α     |  |
| I <sub>FRM</sub>                                                                      | I <sub>FRM</sub> =2xI <sub>Fnom</sub> |                         | 150               | Α     |  |
| I <sub>FSM</sub>                                                                      | $t_p = 10 \text{ ms}; \text{ sin.}$   | T <sub>j</sub> = 150 °C | 720               | Α     |  |
| Module                                                                                |                                       |                         |                   |       |  |
| I <sub>t(RMS)</sub>                                                                   |                                       |                         | 200               | Α     |  |
| T <sub>vj</sub>                                                                       |                                       |                         | - 40 <b>+</b> 150 | °C    |  |
| T <sub>stg</sub>                                                                      |                                       |                         | - 40 <b>+</b> 125 | °C    |  |
| V <sub>isol</sub>                                                                     | AC, 1 min.                            |                         | 4000              | V     |  |

| Characteristics T <sub>ca</sub> |                                                  | T <sub>case</sub> =                        | = 25°C, unless otherwise specified |      |      |           |
|---------------------------------|--------------------------------------------------|--------------------------------------------|------------------------------------|------|------|-----------|
| Symbol                          | Conditions                                       |                                            | min.                               | typ. | max. | Units     |
| IGBT                            |                                                  |                                            |                                    |      |      |           |
| V <sub>GE(th)</sub>             | $V_{GE} = V_{CE}$ , $I_{C} = 3 \text{ mA}$       |                                            | 5,2                                | 5,8  | 6,4  | V         |
| I <sub>CES</sub>                | $V_{GE} = 0 V, V_{CE} = V_{CES}$                 | T <sub>j</sub> = 25 °C                     |                                    |      | 3    | mA        |
| V <sub>CE0</sub>                |                                                  | T <sub>j</sub> = 25 °C                     |                                    | 1    | 1,2  | V         |
|                                 |                                                  | T <sub>j</sub> = 125 °C                    |                                    | 0,9  | 1,1  | V         |
| r <sub>CE</sub>                 | V <sub>GE</sub> = 15 V                           | T <sub>j</sub> = 25°C                      |                                    | 13   | 16,7 | mΩ        |
|                                 |                                                  | T <sub>j</sub> = 125°C                     |                                    | 20   | 24   | $m\Omega$ |
| V <sub>CE(sat)</sub>            | I <sub>Cnom</sub> = 75 A, V <sub>GE</sub> = 15 V |                                            |                                    | 2    | 2,45 | V         |
|                                 |                                                  | T <sub>j</sub> = 125°C <sub>chiplev.</sub> |                                    | 2,4  | 2,9  | V         |
| C <sub>ies</sub>                |                                                  |                                            |                                    | 5,7  |      | nF        |
| C <sub>oes</sub>                | $V_{CE} = 25, V_{GE} = 0 V$                      | f = 1 MHz                                  |                                    | 0,28 |      | nF        |
| C <sub>res</sub>                |                                                  |                                            |                                    | 0,22 |      | nF        |
| $Q_G$                           | V <sub>GE</sub> =-8V/+15V                        |                                            |                                    | 620  |      | nC        |
| R <sub>Gint</sub>               | T <sub>j</sub> = 25 °C                           |                                            |                                    | 8,5  |      | Ω         |
| t <sub>d(on)</sub>              |                                                  |                                            |                                    | 280  |      | ns        |
| t <sub>r</sub>                  | $R_{Gon} = 4.2 \Omega$                           | V <sub>CC</sub> = 1200V                    |                                    | 40   |      | ns        |
| E <sub>on</sub>                 | di/dt = 1680 A/μs                                | I <sub>C</sub> = 75A                       |                                    | 44   |      | mJ        |
| t <sub>d(off)</sub>             | $R_{Goff} = 4.2 \Omega$                          | T <sub>j</sub> = 125 °C                    |                                    | 680  |      | ns        |
| Г <sub>f</sub>                  | di/dt = 490 A/μs                                 | V <sub>GE</sub> =-15V                      |                                    | 140  |      | ns        |
| E <sub>off</sub>                |                                                  | L <sub>s</sub> = 20 nH                     |                                    | 28,5 |      | mJ        |
| R <sub>th(j-c)</sub>            | per IGBT                                         |                                            |                                    |      | 0,24 | K/W       |





### Trench IGBT Modules

#### **SKM 100GB176D**

#### **Features**

- Homogeneous Si
- Trench = Trenchgate technology
- V<sub>CE(sat)</sub> with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I<sub>C</sub>

### Typical Applications\*

- AC inverter drives mains 575 -750 V AC
- Public transport (auxiliary syst.

| Characteristics       |                                                   |                                   |      |      |      |           |  |
|-----------------------|---------------------------------------------------|-----------------------------------|------|------|------|-----------|--|
| Symbol                | Conditions                                        |                                   | min. | typ. | max. | Units     |  |
| Inverse Diode         |                                                   |                                   |      |      |      |           |  |
| $V_F = V_{EC}$        | $I_{Fnom} = 75 \text{ A}; V_{GE} = 0 \text{ V}$   |                                   |      | 1,6  | 1,9  | V         |  |
|                       |                                                   | $T_j = 125  ^{\circ}C_{chiplev.}$ |      | 1,6  | 1,9  | V         |  |
| $V_{F0}$              |                                                   | T <sub>j</sub> = 25 °C            |      | 1,1  | 1,3  | V         |  |
|                       |                                                   | T <sub>j</sub> = 125 °C           |      | 0,9  | 1,1  | V         |  |
| r <sub>F</sub>        |                                                   | T <sub>j</sub> = 25 °C            |      | 6,7  | 8    | mΩ        |  |
|                       |                                                   | T <sub>j</sub> = 125 °C           |      | 9,3  | 11   | $m\Omega$ |  |
| I <sub>RRM</sub>      | I <sub>F</sub> = 75 A                             | T <sub>j</sub> = 125 °C           |      | 78,5 |      | Α         |  |
| $Q_{rr}$              | di/dt = 1650 A/µs                                 | $L_S = 20 \text{ nH}$             |      | 29,6 |      | μC        |  |
| E <sub>rr</sub>       | V <sub>GE</sub> = -15V ; V <sub>CC</sub> = 1200 V |                                   |      | 21,4 |      | mJ        |  |
| $R_{\text{th(j-c)D}}$ | per diode                                         |                                   |      |      | 0,45 | K/W       |  |
| Module                |                                                   |                                   |      |      |      |           |  |
| L <sub>CE</sub>       |                                                   |                                   |      |      | 30   | nΗ        |  |
| R <sub>CC'+EE'</sub>  | res., terminal-chip                               | T <sub>case</sub> = 25 °C         |      | 0,75 |      | mΩ        |  |
|                       |                                                   | T <sub>case</sub> = 125 °C        |      | 1    |      | mΩ        |  |
| R <sub>th(c-s)</sub>  | per module                                        |                                   |      |      | 0,05 | K/W       |  |
| $\rm M_s$             | to heat sink M6                                   |                                   | 3    |      | 5    | Nm        |  |
| M <sub>t</sub>        | to terminals M5                                   |                                   | 2,5  |      | 5    | Nm        |  |
| w                     |                                                   |                                   |      |      | 160  | g         |  |

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

\* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

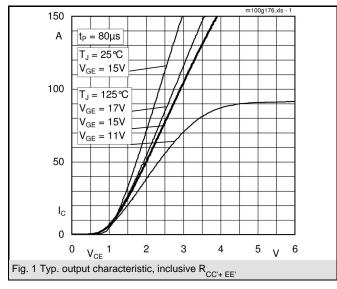


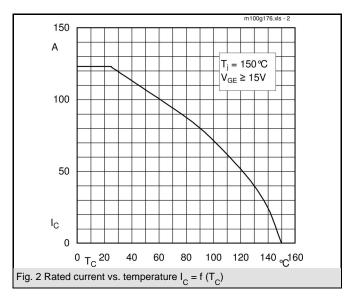


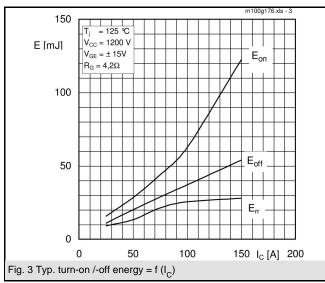
## Trench IGBT Modules

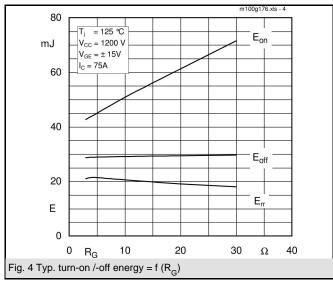
**SKM 100GB176D** 

| F | ea | tu | res |
|---|----|----|-----|
|   | u  | ιч | 163 |


- Homogeneous Si
- Trench = Trenchgate technology
  V<sub>CE(sat)</sub> with positive temperature coefficient
- · High short circuit capability, self limiting to 6 x I<sub>C</sub>


## **Typical Applications\***


- AC inverter drives mains 575 -750 V AC
- Public transport (auxiliary syst.


| Z <sub>th</sub>       | 10         | Walana | 111-24- |  |  |  |  |
|-----------------------|------------|--------|---------|--|--|--|--|
| Symbol                | Conditions | Values | Units   |  |  |  |  |
|                       |            |        |         |  |  |  |  |
| R <sub>i</sub>        | i = 1      | 160    | mk/W    |  |  |  |  |
| R <sub>i</sub>        | i = 2      | 60     | mk/W    |  |  |  |  |
| R <sub>i</sub>        | i = 3      | 16,5   | mk/W    |  |  |  |  |
| $R_i$                 | i = 4      | 3,5    | mk/W    |  |  |  |  |
| tau <sub>i</sub>      | i = 1      | 0,1056 | s       |  |  |  |  |
| tau <sub>i</sub>      | i = 2      | 0,009  | s       |  |  |  |  |
| tau <sub>i</sub>      | i = 3      | 0,0011 | s       |  |  |  |  |
| tau <sub>i</sub>      | i = 4      | 0,0005 | s       |  |  |  |  |
| Z <sub>th(j-c)D</sub> |            |        |         |  |  |  |  |
| R <sub>i</sub>        | i = 1      | 270    | mk/W    |  |  |  |  |
| $R_i$                 | i = 2      | 139    | mk/W    |  |  |  |  |
| $R_i$                 | i = 3      | 37     | mk/W    |  |  |  |  |
| R <sub>i</sub>        | i = 4      | 4      | mk/W    |  |  |  |  |
| tau <sub>i</sub>      | i = 1      | 0,0475 | s       |  |  |  |  |
| tau <sub>i</sub>      | i = 2      | 0,0104 | s       |  |  |  |  |
| tau <sub>i</sub>      | i = 3      | 0,0011 | s       |  |  |  |  |
| tau <sub>i</sub>      | i = 4      | 0,0003 | s       |  |  |  |  |

