
# **SK50GH128T**

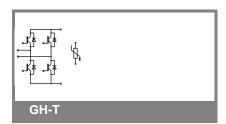


# **IGBT** module

### SK50GH128T

**Target Data** 

### **Features**


- One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- SPT IGBT Technology
- CAL technology FWD
- Integrated NTC Temperature sensor

# **Typical Applications\***


Voltage regulator

| <b>Absolute Maximum Ratings</b> $T_c = 25  ^{\circ}\text{C}$ , unless otherwise specified |                                                         |                         |  |                  |       |  |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------|--|------------------|-------|--|
| Symbol                                                                                    | Conditions                                              |                         |  | Values           | Units |  |
| IGBT                                                                                      | •                                                       |                         |  |                  | •     |  |
| $V_{CES}$                                                                                 | T <sub>j</sub> = 25 °C                                  |                         |  | 1200             | V     |  |
| I <sub>C</sub>                                                                            | T <sub>j</sub> = 125 °C                                 | T <sub>s</sub> = 25 °C  |  | 70               | Α     |  |
|                                                                                           |                                                         | T <sub>s</sub> = 70 °C  |  | 50               | Α     |  |
| I <sub>CRM</sub>                                                                          | $I_{CRM} = 2 \times I_{Cnom}, t_p \le 1 ms$             |                         |  | 100              | Α     |  |
| $V_{GES}$                                                                                 |                                                         |                         |  | 20               | V     |  |
| t <sub>psc</sub>                                                                          | $V_{CC}$ = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V | T <sub>j</sub> = 125 °C |  | 10               | μs    |  |
| Inverse D                                                                                 | iode                                                    |                         |  |                  |       |  |
| I <sub>F</sub>                                                                            | T <sub>j</sub> = 150 °C                                 | $T_s = 25 ^{\circ}C$    |  | 67               | Α     |  |
|                                                                                           |                                                         | T <sub>s</sub> = 70 °C  |  | 50               | Α     |  |
| I <sub>FRM</sub>                                                                          | $I_{FRM}$ = 2 x $I_{Fnom}$ , $t_p \le 1$ ms             |                         |  | 150              | Α     |  |
| I <sub>FSM</sub>                                                                          | t <sub>p</sub> = 10 ms; half sine wave                  | T <sub>j</sub> = 125 °C |  | 550              | Α     |  |
| Module                                                                                    |                                                         |                         |  |                  |       |  |
| I <sub>t(RMS)</sub>                                                                       |                                                         |                         |  |                  | Α     |  |
| $T_{vj}$                                                                                  |                                                         |                         |  | -40 <b>+</b> 150 | °C    |  |
| $T_{stg}$                                                                                 |                                                         |                         |  | -40 <b>+</b> 125 | °C    |  |
| V <sub>isol</sub>                                                                         | AC, 1 min.                                              |                         |  | 2500             | V     |  |

| Characteristics $T_c =$            |                                                  |                                 | 25 °C, unless otherwise specified |      |      |          |  |
|------------------------------------|--------------------------------------------------|---------------------------------|-----------------------------------|------|------|----------|--|
| Symbol                             | Conditions                                       |                                 | min.                              | typ. | max. | Units    |  |
| IGBT                               |                                                  |                                 |                                   |      |      |          |  |
| $V_{GE(th)}$                       | $V_{GE} = V_{CE}$ , $I_C = 2 \text{ mA}$         |                                 | 4,5                               | 5,5  | 6,5  | V        |  |
| I <sub>CES</sub>                   | $V_{GE} = 0 V, V_{CE} = V_{CES}$                 | T <sub>j</sub> = 25 °C          |                                   |      | 0,1  | mA       |  |
|                                    |                                                  | T <sub>j</sub> = 125 °C         |                                   | 0,2  |      | mA       |  |
| I <sub>GES</sub>                   | $V_{CE} = 0 \text{ V}, V_{GE} = 20 \text{ V}$    | T <sub>j</sub> = 125 °C         |                                   |      | 200  | nA       |  |
| V <sub>CE0</sub>                   |                                                  | T <sub>j</sub> = 25 °C          |                                   | 1,1  | 1,3  | V        |  |
|                                    |                                                  | T <sub>j</sub> = 125 °C         |                                   | 1    | 1,2  | V        |  |
| r <sub>CE</sub>                    | V <sub>GE</sub> = 15 V                           | T <sub>j</sub> = 25°C           |                                   | 12   |      | mΩ       |  |
|                                    |                                                  | T <sub>j</sub> = 125°C          |                                   | 22   |      | mΩ       |  |
| V <sub>CE(sat)</sub>               | I <sub>Cnom</sub> = 50 A, V <sub>GE</sub> = 15 V |                                 |                                   | 1,9  | 2,3  | V        |  |
|                                    |                                                  | $T_j = 125^{\circ}C_{chiplev.}$ |                                   | 2,1  |      | V        |  |
| C <sub>ies</sub>                   |                                                  |                                 |                                   | 4,5  |      | nF       |  |
| C <sub>oes</sub>                   | $V_{CE} = , V_{GE} = V$                          | f = MHz                         |                                   | 0,33 |      | nF       |  |
| C <sub>res</sub>                   |                                                  |                                 |                                   | 0,21 |      | nF       |  |
| t <sub>d(on)</sub>                 |                                                  |                                 |                                   |      |      | ns       |  |
| Ţ,                                 | $R_{Gon} = 15 \Omega$                            | V <sub>CC</sub> = 600V          |                                   |      |      | ns       |  |
| Ė <sub>on</sub>                    | D 45.0                                           | I <sub>C</sub> = 50A            |                                   | 6    |      | mJ       |  |
| t <sub>d(off)</sub>                | $R_{Goff} = 15 \Omega$                           | T <sub>j</sub> = 125 °C         |                                   |      |      | ns<br>ns |  |
| t <sub>f</sub><br>E <sub>off</sub> |                                                  |                                 |                                   | 4,6  |      | mJ       |  |
| R <sub>th(j-s)</sub>               | per IGBT                                         |                                 |                                   | 0,51 |      | K/W      |  |



# **SK50GH128T**



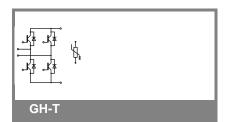
## IGBT module

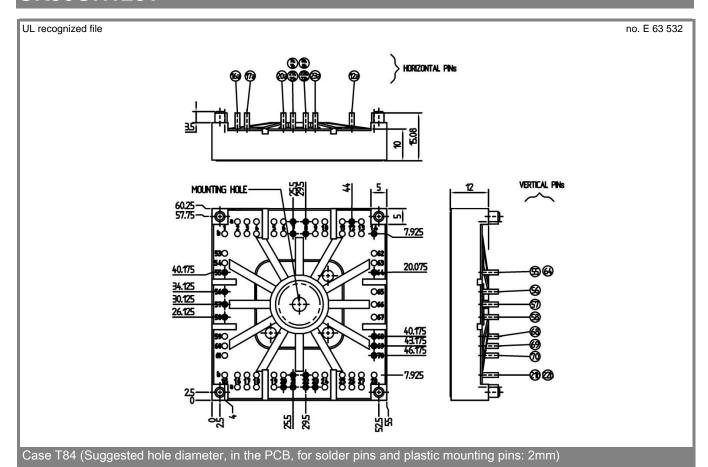
#### **SK50GH128T**

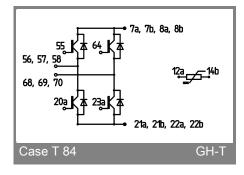
**Target Data** 

### **Features**

- · One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- SPT IGBT Technology
- CAL technology FWD
- Integrated NTC Temperature sensor


### Typical Applications\*


Voltage regulator


| Characteristics                     |                                                 |                                            |      |        |      |           |  |
|-------------------------------------|-------------------------------------------------|--------------------------------------------|------|--------|------|-----------|--|
| Symbol                              | Conditions                                      |                                            | min. | typ.   | max. | Units     |  |
| Inverse Diode                       |                                                 |                                            |      |        |      |           |  |
| $V_F = V_{EC}$                      | $I_{Fnom} = 50 \text{ A}; V_{GE} = 0 \text{ V}$ |                                            |      | 2      |      | V         |  |
|                                     |                                                 | $T_j = 125  ^{\circ}C_{\text{chiplev.}}$   |      | 1,8    |      | V         |  |
| $V_{F0}$                            |                                                 | T <sub>j</sub> = 125 °C                    |      | 1      | 1,2  | V         |  |
| r <sub>F</sub>                      |                                                 | T <sub>j</sub> = 125 °C                    |      | 16     | 22   | $m\Omega$ |  |
| I <sub>RRM</sub><br>Q <sub>rr</sub> | I <sub>F</sub> = 50 A                           | T <sub>j</sub> = 125 °C                    |      |        |      | Α<br>μC   |  |
| E <sub>rr</sub>                     | V <sub>CC</sub> =600V                           |                                            |      | 4      |      | mJ        |  |
| $R_{th(j-s)D}$                      | per diode                                       |                                            |      | 0,7    |      | K/W       |  |
| Freewheeling Diode                  |                                                 |                                            |      |        |      |           |  |
| $V_F = V_{EC}$                      | I <sub>Fnom</sub> = A; V <sub>GE</sub> = V      | $T_j = {^{\circ}C}_{chiplev.}$             |      |        |      | V         |  |
| $V_{F0}$                            |                                                 | $T_j = ^{\circ}C$                          |      |        |      | V         |  |
| r <sub>F</sub>                      |                                                 | $T_j = {^{\circ}C}$<br>$T_i = {^{\circ}C}$ |      |        |      | V         |  |
| I <sub>RRM</sub>                    | I <sub>F</sub> = A                              | T <sub>j</sub> = °C                        |      |        |      | Α         |  |
| $Q_{rr}$                            |                                                 |                                            |      |        |      | μC        |  |
| E <sub>rr</sub>                     |                                                 |                                            |      |        |      | mJ        |  |
|                                     | per diode                                       |                                            |      |        |      | K/W       |  |
| M <sub>s</sub>                      | to heat sink                                    |                                            | 2,5  |        | 2,75 | Nm        |  |
| w                                   |                                                 |                                            |      | 60     |      | g         |  |
| Temperature sensor                  |                                                 |                                            |      |        |      |           |  |
| R <sub>100</sub>                    | $T_s$ = 100°C ( $R_{25}$ =5kΩ)                  |                                            |      | 493±5% |      | Ω         |  |

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

\* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.





