

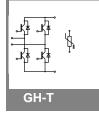
SEMITOP[®]4

IGBT module

SK100GH128T

Target Data

Features


- One screw mounting module
- Fully compatible with SEMITOP[®]1,2,3
- Improved thermal performances by aluminium oxide substrate
- SPT IGBT Technology
- CAL technology FWD
- Integrated NTC Temperature sensor

Typical Applications*

Voltage regulator

 $T_c = 25 \text{ °C}$, unless otherwise specified **Absolute Maximum Ratings** Symbol Conditions Values Units IGBT T_i = 25 °C 1200 V V_{CES} T_s = 25 °C T_i = 125 °C 120 А I_{C} T_s = 70 °C 80 А 200 А I_{CRM} = 2 x I_{Cnom} , $t_p \le 1ms$ I_{CRM} 20 V V_{GES} $V_{CC} = 600 \text{ V}; \text{ } V_{GE} \leq 20 \text{ V}; \quad \text{ } T_{j} = 125 \text{ }^{\circ}\text{C}$ 10 μs t_{psc} VCES < 1200 V Inverse Diode T_i = 150 °C T_s = 25 °C 67 А I_F T_s = 70 °C 50 А $I_{FRM}\text{=}$ 2 x I_{Fnom} , $t_p \leq 1ms$ 110 А I_{FRM} $t_p = 10 \text{ ms}$; half sine wave $T_i = 150 \text{ °C}$ 550 А I_{FSM} Module А I_{t(RMS)} T_{vj} -40 ... +150 °C -40 ... +125 °C T_{stg} AC, 1 min. 2500 V $V_{\rm isol}$

Characteristics T _c =		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 4 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,2	mA
		T _j = 125 °C		0,4		mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 125 °C			400	nA
V _{CE0}		T _j = 25 °C		1,1	1,3	V
		T _j = 125 °C		1	1,2	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		6		mΩ
		T _j = 125°C		11		mΩ
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V			1,9	2,3	V
		$T_j = 125^{\circ}C_{chiplev.}$		2,1		V
C _{ies}				9		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,66		nF
C _{res}				0,42		nF
R _{Gint}	T _j = 25 °C			5		Ω
t _{d(on)}				80		ns
t,	$R_{Gon} = 4 \Omega$	$V_{\rm CC} = 600V$		33		ns
E _{on}	P - 4 0	I _C = 100A		5,97 418		mJ
t _{d(off)} t _f	$R_{Goff} = 4 \Omega$ di/dt = 3000 A/µs	T _j = 125 °C		70		ns ns
E _{off}				8,5		mJ
R _{th(j-s)}	per IGBT	•		0,34		K/W

SEMITOP[®]4

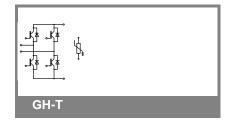
IGBT module

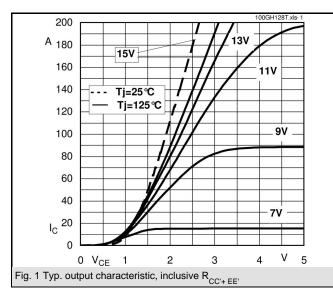
SK100GH128T

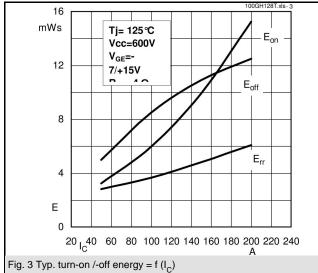
Target Data

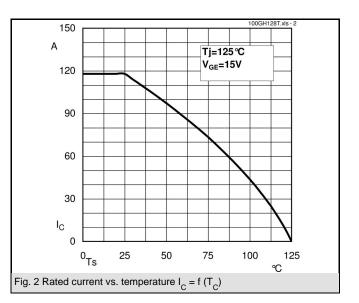
Features

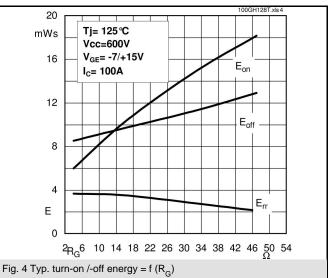
- One screw mounting module
- Fully compatible with SEMITOP[®]1,2,3
- Improved thermal performances by aluminium oxide substrate
- SPT IGBT Technology
- CAL technology FWD
- Integrated NTC Temperature sensor

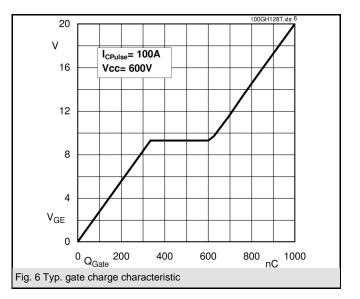

Typical Applications*

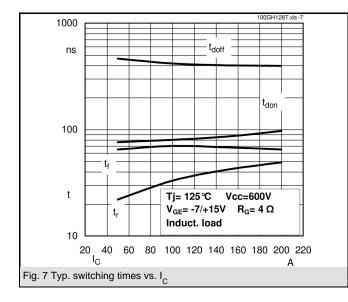

Voltage regulator

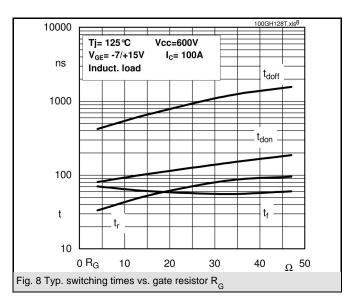

Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse [Diode					
$V_F = V_{EC}$	I _{Fnom} = 55 A; V _{GE} = 0 V			2	2,5	V
1		T _j = 125 °C _{chiplev.}		1,8	2,3	V
V _{F0}		T _j = 125 °C		1,2		V
r _F		T _j = 125 °C		10,9		mΩ
I _{RRM}	I _F = 100 A	T _j = 125 °C		125		Α
Q _{rr}	di/dt = 3000 A/µs	-		25		μC
E _{rr}	V _{CC} =600V			3,66		mJ
R _{th(j-s)D}	per diode			0,7	0,85	K/W
	eling Diode					
$V_F = V_{EC}$	I _{Fnom} = A; V _{GE} = V	$T_j = °C_{chiplev.}$				V
V _{F0}		T _j = °C				V
r _F		T _j = °C				V
I _{RRM}	I _F = A	T _i = °C				Α
Q _{rr}		,				μC
E _{rr}						mJ
	per diode					K/W
M _s	to heat sink		2,5		2,75	Nm
w				60		g
Tempera	ture sensor					•
R ₁₀₀	T _s = 100°C (R ₂₅ =5kΩ)			493±5%		Ω

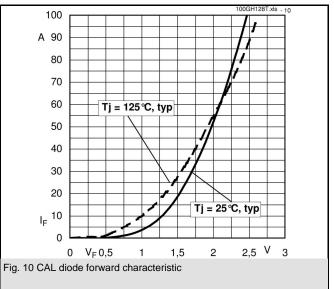

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

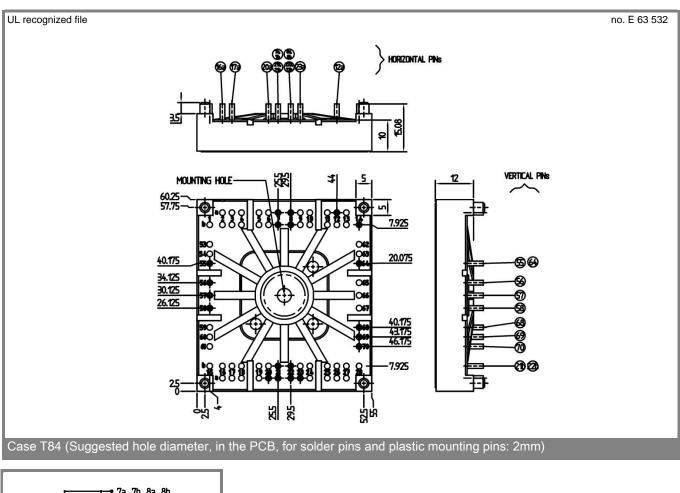

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

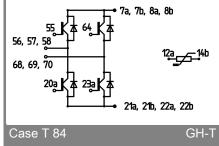











3

